Skip to main content
Log in

Modified multiple scale technique for the stability of the fractional delayed nonlinear oscillator

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present proposal, the familiar method of the parameter expansion is combined with the multiple scales to study the stability behaviour of the Riemann–Liouville fractional derivative applied to the cubic delayed Duffing oscillator. The analysis of the modified multiple scale perturbation leads to a system of nonlinear differential-algebraic equations governing the solvability conditions. The nonlinear differential equation was reduced to the linear differential equation with the help of the algebraic one. The stability attitude of the periodic motion is determined by the steady-state analysis. Such a periodic motion is needed to better understand the dynamics of the fractional cubic delayed Duffing oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H M Srivastava and S Owa, Univalent functions, fractional calculus and their applications (Halsted Press\(/\)Wiley, New York, 1989)

    MATH  Google Scholar 

  2. I Podlubny, Fractional differential equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  3. R Hilfer, Applications of fractional calculus in physics (Academic Press, Orlando, 1999)

    MATH  Google Scholar 

  4. A Abdon and B Dumitru, Therm. Sci. 20(2), 763 (2016)

    Article  Google Scholar 

  5. X J Yang, H M Srivastava and J A T Machado, Therm. Sci. 20(2), 753 (2016)

    Article  Google Scholar 

  6. A Sohail, A M Siddiqui and M Iftikhar, Nonlinear Sci. Lett. A8, 228 (2017)

    Google Scholar 

  7. Ö Güner and A Bekir, Nonlinear Sci. Lett. A8, 41 (2017)

    Google Scholar 

  8. K L Wang and S Y Liu, Therm. Sci. 21(5), 2049 (2017)

    Article  Google Scholar 

  9. Y Wang, Y F Zhang and W J Rui, Therm. Sci. 21(S1), S145 (2017)

  10. X J Yang et al, Phys. Lett. A377, 1696 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  11. K M Kolwankar and A D Gangal, Chaos6, 505 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. K M Kolwankar and A D Gangal, Pramana – J. Phys. 48, 49 (1997)

  13. F Y Wang et al, Therm. Sci.22(1A), 17 (2018)

    Google Scholar 

  14. X J Shang, J G Wang and X J Yang, Therm. Sci. 21(S1), S25 (2017)

  15. S Yao and K Wang, Therm. Sci. 23(3A), 1703 (2019)

    Article  Google Scholar 

  16. K Wang and S W Yao, Therm. Sci.23(4), 2163 (2019)

    Article  MathSciNet  Google Scholar 

  17. R S Barbosa, M J A Tenreiro, B M Vinagre and A J Calderon, J. Vib. Control13, 1291 (2007)

    Article  Google Scholar 

  18. Z M Ge and A R Zhang, Chaos Solitons Fractals32, 1791 (2007)

    Article  ADS  Google Scholar 

  19. J H Chen and W C Chen, Chaos Solitons Fractals35, 188 (2008)

    Article  ADS  Google Scholar 

  20. V Gafiychuk, B Datsko and Meleshkov, Physica A 387, 418 (2008)

  21. V Mishra, S Das, H Jafari and S H Ong, J. King Saud University – Sci.28, 55 (2016)

    Article  Google Scholar 

  22. F Dal, Math. Comput. Appl. 16(1), 301 (2011)

    MathSciNet  Google Scholar 

  23. Y Shen, P Wei, C Sui and S P Yang, Math. Prob. Eng. 411, 17 (2014)

    Google Scholar 

  24. Y J Shen, P Wei and S P Yang, Nonlinear Dyn.77, 1629 (2014)

    Article  Google Scholar 

  25. A Arikoglu and I Ozkol, Chaos Solitons Fractals 34, 1473 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. A H Nayfeh and D T Mook, Nonlinear oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  27. J A Sanders and F Verhulst, Averaging methods in nonlinear dynamical systems (Springer, New York, 1985)

    Book  Google Scholar 

  28. N V Dao, Stability of dynamic dystems (VNU Publishing House, Hanoi, Vietnam, 1998)

    Google Scholar 

  29. J J Thomsen, Vibration and stability, 2nd Edn (Springer, Berlin, 2003)

    Book  Google Scholar 

  30. N V Khang and T Q Chien, J. Comput. Nonlinear Dyn.11(5), 051018 (2016)

    Article  Google Scholar 

  31. W Deng, C Li and J Lü, Nonlinear Dyn.48(4), 409 (2007)

    Article  Google Scholar 

  32. M Shi and Z Wang, Automatica47(9), 2001 (2011)

    Article  MathSciNet  Google Scholar 

  33. A Babakhani, D Baleanu and R Khanbabaie, Nonlinear Dyn.69(3), 721 (2012)

    Article  Google Scholar 

  34. P Wahi and A Chatterjee, Nonlinear Dyn. 38, 3 (2004)

    Article  Google Scholar 

  35. A H Nayfeh and D T Mook, Nonlinear oscillations (Wiley, New York, USA, 1995)

    Book  Google Scholar 

  36. J H He, Int. J. Nonlinear Sci. Numer. Simul.2, 317 (2001)

    Google Scholar 

  37. J H He, Int. J. Nonlinear Mech. 37, 309 (2002)

    Article  ADS  Google Scholar 

  38. J H He, Non-perturbative methods for strongly nonlinear problems, Dissertation (Der Verlag im Internet GmbH Berlin, 2006)

  39. Y O El-Dib, G M Moatimid and A A Mady, Pramana – J. Phys. 93: 82 (2019)

  40. Y O El-Dib, Sci. Eng. Appl. 2(1), 96 (2017)

    Google Scholar 

  41. Y O El-Dib, Alexandria Eng. J. 57, 4009 (2018)

    Article  Google Scholar 

  42. Y O El-Dib, Int. Ann. Sci. 5, 12 (2018)

    Article  Google Scholar 

  43. Y O El-Dib, J. Appl. Comput. Mech.4(4), 260 (2018)

    Google Scholar 

  44. Y O El-Dib, Pramana – J. Phys. 92: 7 (2019)

  45. Zhong-Fu Ren, Shao-Wen Yao and Ji-Huan He, J. Low Freq. Noise V A, https://doi.org/10.1177/1461348419861450 (2019)

    Article  Google Scholar 

  46. J Munkhammar, Riemann–Liouville fractional derivatives and the Taylor–Riemann series, Thesis for Bachelors degree of mathematics, Advisor: Andreas Strömbergsson (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusry O El-Dib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Dib, Y.O. Modified multiple scale technique for the stability of the fractional delayed nonlinear oscillator. Pramana - J Phys 94, 56 (2020). https://doi.org/10.1007/s12043-020-1930-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-1930-0

Keywords

PACS Nos

Navigation