Skip to main content
Log in

Exact solitary wave solutions to the (2 + 1)-dimensional generalised Camassa–Holm–Kadomtsev–Petviashvili equation

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, a (\(2{+}1\))-dimensional nonlinear evolution equation (NLEE), namely the generalised Camassa–Holm–Kadomtsev–Petviashvili equation (gCHKP) or Kadomtsev–Petviashvili–Benjamin–Bona–Mahony equation (KP-BBM), is examined. After applying the newly developed generalised exponential rational function method (GERFM), 14 travelling wave solutions are formally generated. It is worth mentioning that by specifying values to free parameters some previously obtained solutions can be recovered. The simplest equation method (SEM) is used to prove that the solutions obtained by GERFM are good. With the aid of a symbolic computation system, we prove that GERFM is more efficient and faster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A M Wazwaz, Partial differential equations and solitary waves theory (Springer Science & Business Media, 2010)

  2. M B Hubert et al, Eur. Phys. J. Plus 133(3), 108 (2018)

    Article  Google Scholar 

  3. M Mirzazadeh et alNonlinear Anal. Modell. Control 22(4), 441 (2017)

    MathSciNet  Google Scholar 

  4. X Y Gao, Ocean Eng. 96, 245 (2015)

    Article  Google Scholar 

  5. A R Seadawy and K El-Rashidy, Results Phys. 8, 1216 (2018)

    Article  ADS  Google Scholar 

  6. Y Z Sun, Q Wu, M Wang and J Y Li, Pramana – J. Phys93(5): 71 (2019)

    Google Scholar 

  7. S Z Hassan and M A Abdelrahman, Pramana – J. Phys. 91(5): 67 (2018)

    Google Scholar 

  8. A R Seadawy and J Wang, Pramana – J. Phys. 91(2): 26 (2018)

    Google Scholar 

  9. K R Raslan, Nonlinear Dyn53(4), 281 (2008)

    Article  MathSciNet  Google Scholar 

  10. M A Abdou, Chaos Solitons Fractals 31, 95 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. S Guo and Y Zhou, Appl. Math. Comput. 215(9), 3214 (2010)

    MathSciNet  Google Scholar 

  12. E M Zayed and A H Arnous, Int. J. Phys. Sci. 8(3), 124 (2013)

    Article  Google Scholar 

  13. Y Wu et al, Phys. Lett. A 255(4), 259 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. S Koonprasert and M Punpocha, Global J. Pure Appl. Math. 12(3), 1903 (2016)

    Google Scholar 

  15. S Shen, Appl. Math.: A Journal of Chinese Universities 22(2), 207 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. İ Aslan, Math. Meth. Appl. Sci. 39(18), 5619 (2016)

    Article  Google Scholar 

  17. İ Aslan, Appl. Math. Comput. 217(12), 6013 (2011)

    MathSciNet  Google Scholar 

  18. İ Aslan, Commun. Theor. Phys. 65(1), 39 (2016)

    Article  MathSciNet  Google Scholar 

  19. A M Wazwaz and L Kaur, Nonlinear Dyn.https://doi.org/10.1007/s11071-019-04955-1 (2019)

  20. A M Wazwaz, Optikhttps://doi.org/10.1016/j.ijleo.2019.01.018 (2019)

  21. X B Wang et al, Comput. Math. Appl. 74(3), 556 (2017)

    Article  MathSciNet  Google Scholar 

  22. W X Ma, T Huang and Y Zhang, Phys. Scr82(6), 065003 (2010)

    Article  ADS  Google Scholar 

  23. A M Wazwaz and L Kaur, Optik https://doi.org/10.1016/j.ijleo.2019.04.118 (2019)

  24. C Y Qin et al, Commun. Nonlinear Sci. Numer. Simulat. 62, 378 (2018)

    Article  ADS  Google Scholar 

  25. Y Mammeri, Differ. Integral Equ. 22(3–4), 393 (2009)

    MathSciNet  Google Scholar 

  26. Y Yu and H C Ma, Appl. Math. Comput. 217(4), 1391 (2010)

  27. M Song, C Yang and B Zhang, Appl. Math. Comput. 217(4), 1334 (2010)

    MathSciNet  Google Scholar 

  28. R Kumar, M Kumar and A Kumar, IOSR J. Math. 6, 23 (2013)

    Article  Google Scholar 

  29. M N Alam and M A Akbar, Springerplus 2, 617(2013)

  30. A Ganguly and A Das, Commun. Nonlinear Sci. Numer. Simulat25(1–3), 102 (2015)

    Article  ADS  Google Scholar 

  31. J Akter and M A Akbar, J. Partial Differ. Equ. 29(2), 143 (2016)

    Article  MathSciNet  Google Scholar 

  32. U Khan et al, Opt. Quant. Electron. 50, 135 (2018)

    Article  Google Scholar 

  33. B Ghanbari and M Inc, Eur. Phys. J. Plus 133, 142 (2018)

    Article  Google Scholar 

  34. N A Kudryashov, Commun. Nonlinear Sci. Numer. Simulat. 17, 2248 (2012)

    Article  ADS  Google Scholar 

  35. N A Kudryashov, Commun. Nonlinear Sci. Numer. Simulat. 14, 3507 (2009)

    Article  ADS  Google Scholar 

  36. N K Vitanov, Commun. Nonlinear Sci. Numer. Simulat. 15, 2050 (2010)

    Article  ADS  Google Scholar 

  37. O Alsayyed et al, J. Nonlinear Sci. Appl. 9(4), 1807 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees for their valuable comments which improved the paper. The work of the second author is supported by the Science and Technology project of Jiangxi Provincial Health and Family Planning Commission (20175537).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Guo Liu.

Appendix: Maple code

Appendix: Maple code

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, B., Liu, JG. Exact solitary wave solutions to the (2 + 1)-dimensional generalised Camassa–Holm–Kadomtsev–Petviashvili equation. Pramana - J Phys 94, 21 (2020). https://doi.org/10.1007/s12043-019-1893-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1893-1

Keywords

PACS Nos

Navigation