Skip to main content
Log in

The energy fluxes of surface waves propagating along the interface between nonlinear media with different characteristics

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We describe analytically the nonlinear surface waves at the interface between two nonlinear media with different characteristics. We use one-dimensional nonlinear Schrödinger equation with cubic nonlinearity differing on the opposite sides of the interface. We take into account the interaction of excitations with media interface. We consider the interaction of the wave with the interface using the local potential approximated by Dirac delta function. We derive and analyse three types of dispersion equations determining the surface wave frequencies. We propose two approaches to determine the flux depending on the choice of one of the possible control parameters. We calculate the energy flux of the surface waves and analyse the influence of intensity interaction of excitations with interface and difference of media characteristics on the opposite sides of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R Carretero-González, J Cuevas-Maraver, D Frantzes-kakis, N Karachalios, P Kevrekidis and F Palmero-Acebedo, Localized excitations in nonlinear complex systems (Springer Science & Business Media, Springer Cham New York Heidelberg Dordrecht London, 2013)

    MATH  Google Scholar 

  2. Yu S Kivshar and G P Agrawal, Optical solitons: From fibers to photonic crystals (Academic Press, San Diego, 2003)

    Google Scholar 

  3. Y V Kartashov, B A Malomed and L Torner, Rev. Mod. Phys. 83, 247 (2011)

    Article  ADS  Google Scholar 

  4. N N Ahmediev, V I Korneev and U V Kuzmenko, J. Exp. Theor. Phys. 88, 107 (1985)

    Google Scholar 

  5. Y V Bludov, D A Smirnova, Yu S Kivshar, N M R Peres and M I Vasilevsky, Phys. Rev. B 89, 035406 (2014)

    Article  ADS  Google Scholar 

  6. A A Sukhorukov and Yu S Kivshar, Phys. Rev. Lett. 87, 083901 (2001)

    Article  ADS  Google Scholar 

  7. I S Panyaev and D G Sannikov, Comput. Opt. 41, 183 (2017)

    Article  ADS  Google Scholar 

  8. T Strudley, R Bruck, B Mills and O L Muskens, Light Sci. Appl. 3, e207 (2014)

    Article  ADS  Google Scholar 

  9. Yu S Kivshar, A M Kosevich and O A Chubykalo, Phys. Lett. A 125, 35 (1987)

    Article  ADS  Google Scholar 

  10. Yu S Kivshar, A M Kosevich and O A Chubykalo, Phys. Rev. A 41, 1677 (1990)

    Article  ADS  Google Scholar 

  11. F Kh Abdullaev, B B Baizakov and B A Umarov, Opt. Commun. 156, 341 (1998)

    Article  ADS  Google Scholar 

  12. I E Dikshtein, S A Nikitov and D S Nikitov, Phys. Solid State 40, 1710 (1998)

    Article  ADS  Google Scholar 

  13. A D Boardman, M M Shabat and R F Wallis, J. Phys. D 24, 1702 (1991)

    Article  ADS  Google Scholar 

  14. I V Shadrivov, A A Sukhorukov, Yu S Kivshar, A A Zharov, A D Boardman and P Egan, Phys. Rev. E 69, 016617 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. D Mihalache, R G Nazmitdinov and V K Fedyanin, Phys. Elem. Part. At. Nucl. 20, 198 (1989)

    Google Scholar 

  16. O V Korovai and P I Khadzhi, Phys. Solid State 52, 2434 (2010)

    Article  ADS  Google Scholar 

  17. L V Fedorov and K D Ljahomskaja, Tech. Phys. Lett. 23, 915 (1997)

    Article  ADS  Google Scholar 

  18. B A Usievich, D Kh Nurligareev, V A Sychugov, L I Ivleva, P A Lykov and N V Bogodaev, Quantum Electron. 40, 437 (2010)

    Article  ADS  Google Scholar 

  19. L Calaca, A T Avelar, D Bazeia and W B Cardoso, Commun. Nonlinear Sci. Numer. Simul. 19, 2928 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. K Zhan, H Tian, X Li, X Xu, Z Jiao and Y Jia, Sci. Rep. 6, 32990 (2016)

    Article  ADS  Google Scholar 

  21. V I Gorentsveig, Yu S Kivshar, A M Kosevich and E S Syrkin, Fiz. Nizk. Temp. 16, 1472 (1990)

    Google Scholar 

  22. I V Gerasimchuk, V S Gerasimchuk and Y I Gorobets, J. Nano-Electron. Phys. 8, 02020 (2016)

    Article  Google Scholar 

  23. I V Gerasimchuk and V S Gerasimchuk, J. Appl. Phys. 124, 085301 (2018)

    Article  ADS  Google Scholar 

  24. A I Buzdin, V N Men’shov and V V Tugushev, Sov. Phys. JETP 64, 1310 (1986)

    Google Scholar 

  25. A I Buzdin and S V Polonskii, Sov. Phys. JETP 66, 422 (1987)

    Google Scholar 

  26. V N Men’shov and V V Tugushev, Phys. Solid State 44, 1727 (2002)

    Article  ADS  Google Scholar 

  27. H Sakaguchi and B A Malomed, New J. Phys. 18, 025020 (2016)

    Article  ADS  Google Scholar 

  28. N V Vysotina, N N Rosanov and A N Shatsev, Opt. Spectrosc. 124, 79 (2018)

    Article  ADS  Google Scholar 

  29. A V Chaplik, J. Exp. Theor. Phys. Lett. 105, 601 (2017)

    Article  Google Scholar 

  30. P Medley, M A Minar, N C Cizek, D Berryrieser and M A Kasevich, Phys. Rev. Lett. 112, 060401 (2014)

    Article  ADS  Google Scholar 

  31. A L Marchant, T P Billam, T P Wiles, M M H Yu, S A Gardiner and S L Cornish, Nat. Commun. 4, 1865 (2013)

    Article  ADS  Google Scholar 

  32. A A Sukhorukov and Yu S Kivshar, J. Opt. Soc. Am. B 19, 772 (2002)

    Article  ADS  Google Scholar 

  33. S E Savotchenko, Russ. Phys. J. 47, 556 (2004)

    Article  Google Scholar 

  34. M M Bogdan, I V Gerasimchuk and A S Kovalev, Low Temp. Phys. 23, 197 (1997)

    Article  Google Scholar 

  35. S E Savotchenko, Condens. Matter Interphases 19, 567 (2017)

    Google Scholar 

  36. I V Gerasimchuk, J. Exp. Theor. Phys. 121, 596 (2015)

    Article  ADS  Google Scholar 

  37. S E Savotchenko, Mod. Phys. Lett. B 32, 1850120 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. S E Savotchenko, Condens. Matter Interphases 20, 255 (2018)

    Google Scholar 

  39. S E Savotchenko, J. Exp. Theor. Lett. 107, 455 (2018)

    Article  Google Scholar 

  40. S E Savotchenko, J. Exp. Theor. Lett. 108, 175 (2018)

    Article  Google Scholar 

  41. S E Savotchenko, Solid State Commun. 283, 1 (2018)

    Article  ADS  Google Scholar 

  42. S E Savotchenko, J. Exp. Theor. Phys. 127, 434 (2018)

    Article  ADS  Google Scholar 

  43. S E Savotchenko, Mod. Phys. Lett. B 32, 1850371 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  44. S E Savotchenko, Surf. Interfaces 13, 157 (2018)

    Article  Google Scholar 

  45. I V Gerasimchuk and A S Kovalev, Low Temp. Phys. 26, 586 (2000)

    Article  ADS  Google Scholar 

  46. S E Savotchenko, Opt. Spectrosc. 126, 554 (2019)

    Article  Google Scholar 

  47. S E Savotchenko, Phys. Solid State 61, 495 (2019)

    Article  ADS  Google Scholar 

  48. S E Savotchenko, Phys. Solid State 61, 575 (2019)

    Article  ADS  Google Scholar 

  49. S E Savotchenko, Tech. Phys. 61, 133 (2019)

    Article  Google Scholar 

  50. H Vach, C T Seaton, G I Stegeman and I C Khoo, Opt. Lett. 9, 238 (1984)

    Article  ADS  Google Scholar 

  51. Y J Chen and G M Carter, Appl. Phys. Lett. 41, 309 (1982)

    ADS  Google Scholar 

  52. J D Valera, C T Seaton, G I Stegeman, R L Shoemaker, X Mai and C Liao, Appl. Phys. Lett. 45, 1013 (1984)

    Article  ADS  Google Scholar 

  53. S M Jensen, IEEE J. Quantum Electron. 18, 1580 (1982)

    Article  ADS  Google Scholar 

  54. M Cada, R C Gauthier, B E Paton and J Chrostowski, Appl. Phys. Lett. 49, 755 (1986)

    Article  ADS  Google Scholar 

  55. M Cada, B P Keyworth, J M Glinski, A J SpringThorpe and P Mandeville, J. Opt. Soc. Am. B 5, 462 (1988)

    Article  ADS  Google Scholar 

  56. C T Seaton, X Mai, G I Stegeman and H G Winful, Opt. Eng. 24, 593 (1985)

    Article  ADS  Google Scholar 

  57. D Mihalache, R G Nazmitdinov and V K Fedyanin, Phys. Scr. 29, 269 (1984)

    Article  ADS  Google Scholar 

  58. V K Fedyanin and V G Makhankov, Phys. Scr. 20, 552 (1979)

    Article  ADS  Google Scholar 

  59. A B Aceves, J V Moloney and A C Newell, Phys. Rev. A 39, 1809 (1989)

    Article  ADS  Google Scholar 

  60. B Alfassi, C Rotschild, O Manela, M Segev and D N Christodoulides, Phys. Rev. Lett. 98, 213901 (2007)

    Article  ADS  Google Scholar 

  61. H S Ashour and A I Assa’d, J. Al Azhar Univ.-Gaza (Nat. Sci.) 13, 93 (2011)

  62. C Liu, Y Y Li, M Gao, Z Wang, Z Dai and C Wang, Pramana – J. Phys. 85, 1063 (2015)

    Article  ADS  Google Scholar 

  63. X G Lin, W J Liu, M Lei, Z Wang, Z Dai and C Wang, Pramana – J. Phys. 86, 575 (2016)

    Article  ADS  Google Scholar 

  64. N Zhong, Z Wang, M Chen, X Xin, R. Wu, Y Cen and Y Li, Sens. Actuators B: Chem. 254, 133 (2018)

    Article  Google Scholar 

  65. D Zhang, Z Li, W Hu and B Cheng, Appl. Phys. Lett. 67, 2431 (1995)

    Article  ADS  Google Scholar 

  66. B A Naim, Chin. J. Phys. 55, 2384 (2017)

    Article  Google Scholar 

  67. N Pendam and C P Vardhani, Pramana – J. Phys. 92: 30 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Savotchenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savotchenko, S.E. The energy fluxes of surface waves propagating along the interface between nonlinear media with different characteristics. Pramana - J Phys 93, 77 (2019). https://doi.org/10.1007/s12043-019-1840-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-019-1840-1

Keywords

PACS Nos

Navigation