Skip to main content
Log in

Multiswitching combination synchronisation of non-identical fractional-order chaotic systems

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, multiswitching combination synchronisation (MSCS) scheme has been investigated in a class of three non-identical fractional-order chaotic systems. The fractional-order Lorenz and Chen systems are taken as the drive systems. The combination of multidrive systems is then synchronised with the fractional-order Lü chaotic system. In MSCS, the state variables of the two drive systems synchronise with different state variables of the response system, simultaneously. Based on the stability of fractional-order chaotic systems, the MSCS of three fractional-order non-identical systems has been investigated. For the synchronisation of three non-identical fractional-order chaotic systems, suitable controllers have been designed. Theoretical analysis and numerical results are presented to demonstrate the validity and feasibility of the applied method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I Podlubny, Fractional differential equations (Academic Press, New York, 1999)

    MATH  Google Scholar 

  2. R Hilfer, Applications of fractional calculus in physics (World Scientific, 2000)

  3. R Caponetto, J J Trujillo and J A T Machado, Mathematical problems in engineering (2016)

  4. K A Lazopoulos, D Karaoulanis and A K Lazopoulos, Mech. Res. Commun. 78, 1–5, (2016)

    Article  Google Scholar 

  5. A H Bhrawy and M A Zaky, Appl. Math. Model. 40(2), 832 (2016)

    Article  MathSciNet  Google Scholar 

  6. R P Agarwal, A M El-Sayed and S M Salman, Adv. Differ. Equ. 1(1) (2013)

    Google Scholar 

  7. C Li and G Chen, Physica A 341, 55 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  8. C Li and G Peng, Chaos Solitons Fractals 22(2), 443 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  9. W H Deng and C P Li, Physica A 353, 61 (2005)

    Article  ADS  Google Scholar 

  10. Z M Ge and C Y Ou, Chaos Solitons Fractals 34(2), 262 (2007)

    Article  ADS  Google Scholar 

  11. L M Pecora and T L Carroll, Phys. Rev. Lett. 64(8), 821 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  12. A Khan and Shikha, Int. J. Dynam. Control, https://doi.org/10.1007/s40435-017-0339-1 (2017)

  13. L Chen, R Wu, Y He and Y Chai, Nonlinear Dynam. 80(1–2), 51 (2015)

    Article  MathSciNet  Google Scholar 

  14. X Lin, S Zhou and H Li, Int. J. Bifurc. Chaos 26(03), 1650046 (2016)

    Article  Google Scholar 

  15. A Khan and Shikha, Int. J. Dyn. Control 5(4), 1114 (2017)

    Article  MathSciNet  Google Scholar 

  16. A Khan and M A Bhat, Nonlinear Dyn. Syst. Theory 16(4), 350 (2016)

    MathSciNet  Google Scholar 

  17. N F Rulkov, M M Sushchik, L S Tsimring and H D Abarbanel, Phys. Rev. E 51(2), 980 (1995)

    Article  ADS  Google Scholar 

  18. R Mainieri and J Rehacek, Phys. Rev. Lett. 82(15), 3042 (1999)

    Article  ADS  Google Scholar 

  19. A Khan and M A Bhat, Comput. Math. Model. 28(4), 517 (2017)

  20. A Khan and S Shikha, Int. J. Nonlinear Sci. 22(1), 44 (2016)

    MathSciNet  Google Scholar 

  21. L Runzi, W Yinglan and D Shucheng, Chaos 21(4), 043 (2011)

    Article  Google Scholar 

  22. L Runzi and W Yinglan, Chaos 22(2), 023 (2012)

    Article  Google Scholar 

  23. J Sun, Y Shen, Q Yin and C Xu, Chaos 23(1), 013 (2013)

    Article  Google Scholar 

  24. J Sun, Q Yin and Y Shen, Europhys. Lett. 106(4), 40005 (2014)

    Article  ADS  Google Scholar 

  25. A Wu and J Zhang, Adv. Differ. Equ. 1(1), 228 (2014).

  26. J Sun, Y Shen, G Zhang, C Xu and G Cui, Nonlinear Dyn. 73(3), 1211 (2013)

    Article  Google Scholar 

  27. A Khan and M A Bhat, Math. Meth. Appl. Sci. 40(15), 5654 (2017)

  28. B Zhang and F Deng, Nonlinear Dyn. 77(4), 1519 (2014)

    Article  Google Scholar 

  29. K S Ojo, A N Njah and O I Olusola, Arch. Control Sci. 25(4), 463 (2015)

    Article  MathSciNet  Google Scholar 

  30. A Ucar, K E Lonngren and E W Bai, Chaos Solitons Fractals 38(1), 254 (2008)

  31. M A Bhat and A Khan, Int. J. Model. Simul., https://doi.org/10.1080/02286203.2018.1442988(2018)

  32. A Khan and M A Bhat, Int. J. Dynam. Control 5(4), 1211 (2017)

    Article  Google Scholar 

  33. A Khan and M A Bhat, J. Uncertain Sys. 11 (2017)

  34. M Caputo, Geophys. J. Int. 13(5), 529 (1967)

    Article  ADS  Google Scholar 

  35. K Diethelm and N J Ford, J. Math. Anal. Appl. 265(2), 229 (2002)

    Article  MathSciNet  Google Scholar 

  36. D Matignon, Comput. Engng Syst. Appl. 2, 963 (1996)

    Google Scholar 

  37. Y Yu, H X Li, S Wang and J Yu, Chaos Solitons Fractals 42(2), 1181 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  38. C Li and G Chen, Chaos Solitons Fractals 22(3), 549 (2004)

    Article  ADS  Google Scholar 

  39. J G Lu, Phys. Lett. A 354(4), 305 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Ahmad Bhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhat, M.A., Khan, A. Multiswitching combination synchronisation of non-identical fractional-order chaotic systems. Pramana - J Phys 90, 73 (2018). https://doi.org/10.1007/s12043-018-1560-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1560-y

Keywords

PACS Nos

Navigation