Skip to main content

Advertisement

Log in

Optical characteristics of a RF DBD plasma jet in various \(\hbox {Ar}/\hbox {O}_{2}\) mixtures

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this paper, using the optical emission spectroscopy (OES) technique, the optical characteristics of a radiofrequency (RF) plasma jet are examined. The \(\hbox {Ar}/\hbox {O}_{2}\) mixture is taken as the operational gas and, the Ar percentage in the \(\hbox {Ar}/\hbox {O}_{2}\) mixture is varied from 70% to 95%. Using the optical emission spectrum analysis of the RF plasma jet, the excitation temperature is determined based on the Boltzmann plot method. The electron density in the plasma medium of the RF plasma jet is obtained by the Stark broadening of the hydrogen Balmer \(H_{\beta }\). It is mostly seen that, the radiation intensity of Ar 4p\(\rightarrow \)4s transitions at higher argon contributions in \(\hbox {Ar}/\hbox {O}_{2}\) mixture is higher. It is found that, at higher Ar percentages, the emission intensities from atomic oxygen (O) are higher and, the line intensities from the argon atoms and ions including O atoms linearly increase. It is observed that the quenching of \(\hbox {Ar}^{*}\) with \(\hbox {O}_{2}\) results in higher O species with respect to \(\hbox {O}_{2}\) molecules. In addition, at higher percentages of Ar in the \(\hbox {Ar}/\hbox {O}_{2}\) mixture, while the excitation temperature is decreased, the electron density is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M J Shenton and G C Stevems, J. Phys. D: Appl. Phys. 34, 2761 (2001)

    Article  ADS  Google Scholar 

  2. W T Huang and S Z Li, IEEE Trans. Plasma Sci. 38, 121 (2010)

    Article  Google Scholar 

  3. N Abramzon, J C Joaquin, J Bray and G Brelles-Marino, IEEE Trans. Plasma Sci. 34, 1304 (2006)

    Article  Google Scholar 

  4. X T Deng, J J Shi and M G Kong, IEEE Trans. Plasma Sci. 34, 1310 (2006)

    Article  Google Scholar 

  5. X H Zhang, J Huang and X D Liu, J. Appl. Phys. 105, 302 (2005)

    Google Scholar 

  6. M Laroussi and X Lu, Appl. Phys. Lett. 87, 902 (2005)

    Article  Google Scholar 

  7. S Tao, Z Cheng, L Kaihua, Z Dongdong, W Jue, Y Ping and Z Yuanxiang, Appl. Surf. Sci. 12, 3888 (2010)

    Google Scholar 

  8. S Tao, Y Yang, Z Cheng, J Hui, Y Ping and Z Yuanxiang, Plasma Sci. Technol. 13, 735 (2011)

    Article  ADS  Google Scholar 

  9. S Tao, Z Cheng, N Zheng, Y Yang, Y Ping and Z Yuanxiang, Plasma Sci. Technol. 13, 591 (2011)

    Article  ADS  Google Scholar 

  10. M A Lieberman and A J Lichtenberg, MRS Bull. 30, 899 (2005)

    Article  Google Scholar 

  11. L Moravský, M Klas, S Matejcik and E Machova, Proceedings of the 22nd Annual Conference of Doctoral Students, 149 (2013)

  12. L Schaper, S Reuter, J Waskoenig, K Niemi, V Schulz-von der Gathen and T Gans, J. Phys.: Conf. Ser. 162, 012013 (2009)

    Google Scholar 

  13. H Tanaka et al, IEEE Trans. Plasma Sci. 1, 3813 (2014)

    Google Scholar 

  14. C Hoffmann, C Berganza and J Zhang, Med. Gas Res. 3, 21 (2013)

    Article  Google Scholar 

  15. T H Chung, H R Kang and M K Bae, Phys. Plasmas 19, 113502 (2012)

    Article  ADS  Google Scholar 

  16. M K Khalaf, I R Agool and S H Abd Muslim, Int. J. Appl. Innov. Engng. Manage. 3, 113 (2014)

  17. S Ono, T Suganuma and Y Suzuki, 19th International Symposium on Plasma Chemistry (Bochum, 26–31 July 2009)

  18. K Wagatsuma and H Kichinosuke, Anal. Chim. Acta 306, 193 (1995)

    Article  Google Scholar 

  19. J Ying, R Chunsheng, Y Liang, Z Jialiang and W Dezhen, Plasma Sci. Technol. 15, 1203 (2013)

    Article  Google Scholar 

  20. P J Cullen and V Milosavljevi, Prog. Theor. Exp. Phys. 2015(1), 063J01 (2015)

  21. J Florian, N Merbahi, G Wattieaux, J-M Plewa and M Yousfi, IEEE Trans. Plasma Sci. 43, 3332 (2015)

    Article  ADS  Google Scholar 

  22. M Laroussi, Plasma Sci. 37, 714 (2009)

    Article  Google Scholar 

  23. S E Babayan, J Y Jeong, A Schutze, V J Tu, M Moravej, G S Selwyn and R F Hicks, Plasma Sources Sci. Technol. 10, 573 (2001)

    Article  ADS  Google Scholar 

  24. K D Weltmann, E Kindel, R Brandenburg, C Meyer, R Bussiahn, C Wilke and T von Woedtke, Contrib. Plasma Phys. 49, 631 (2009)

    Article  ADS  Google Scholar 

  25. C O Laux, T G Spence, C H Kruger and R N Zare, Plasma Sources Sci. Technol. 12, 125 (2003)

    Article  ADS  Google Scholar 

  26. D Staack, B Farouk, A Gutsol and A Fridman, Plasma Sources Sci. Technol. 14, 700 (2005)

    Article  ADS  Google Scholar 

  27. S Pandhija and A K Rai, Appl. Phys. B 94, 545 (2009)

    Article  ADS  Google Scholar 

  28. M C Quintero, A Rodero, M C Garcia and A Sola, Appl. Spectrosc. 51, 778 (1997)

    Article  ADS  Google Scholar 

  29. https://physics.nist.gov/PhysRefData/ASD/lines_form.html

  30. H R Griem, Plasma spectroscopy (McGraw-Hill, New York, 1964)

  31. J Torres, M J van de Sande, J van der Mullen, A Gamero and A Sola, Spectrochim. Acta B 61, 58 (2006)

    Article  ADS  Google Scholar 

  32. M A Gigosos and V Cardenoso, J. Phys. B 29, 4795 (1996)

    Article  ADS  Google Scholar 

  33. F J Mehr and M A Biondi, Phys. Rev. 176, 322 (1968)

    Article  ADS  Google Scholar 

  34. S G Belostotskiy, T Ouk, V M Donnelly, D J Economou and N Sadeghi, J. Appl. Phys. 107, 053305 (2010)

    Article  ADS  Google Scholar 

  35. A Yu Nikiforov, Ch Leys, M A Gonzalez and J L Walsh, Plasma Sources Sci. Technol. 24, 034001 (2015)

    Article  ADS  Google Scholar 

  36. M Qian, C Ren, D Wang, J Zhang and G Wei, J. Appl. Phys. 107, 063303 (2010)

    Article  ADS  Google Scholar 

  37. J M Palomares, S Hubner, E A D Carbone, N de Vries, E M van Veldhuizen, A Sola, A Gamero and J J A M van der Mullen, Spectrochim. Acta B 73, 39 (2012)

    Article  ADS  Google Scholar 

  38. V Milosavljevic and G Poparic, Phys. Rev. E 63, 036404 (2001)

    Article  ADS  Google Scholar 

  39. Q Xiong, A Y Nikiforov, X P Lu and C Leys, J. Phys. D: Appl. Phys. 43, 415201 (2010)

    Article  Google Scholar 

  40. R S F Chang and D W Setser, J. Chem. Phys. 69, 3885 (1978)

    Article  ADS  Google Scholar 

  41. J Pavlik, R Hrach, P Hedbavny and P Sovièek, Superficies Vacio. 9, 131 (1999)

    Google Scholar 

  42. E H Lock, R F Fernsler, S Slinker and S G Walton, Naval Research Laboratory Report (2011)

  43. D Xiao, C Cheng, J Shen, Y Lan, H Xie, X Shu, Y Meng, J Li and P K Chu, Phys. Plasmas 21, 053510 (2014)

    Article  ADS  Google Scholar 

  44. J Pan et al, Cold Plasma Therapy 39, 105 (2013)

    Google Scholar 

  45. M K Boudam, M Moisan, B Saoudi, C Popovici, N Gherardi and F Massines, J. Phys. D: Appl. Phys. 29, 3494 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Institute of Science and High Technology and Environmental Sciences for financial support (No. 7.S.95.3422-22 / 12 / 1395).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Ganjovi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falahat, A., Ganjovi, A., Taraz, M. et al. Optical characteristics of a RF DBD plasma jet in various \(\hbox {Ar}/\hbox {O}_{2}\) mixtures. Pramana - J Phys 90, 27 (2018). https://doi.org/10.1007/s12043-018-1520-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-018-1520-6

Keywords

PACS Nos

Navigation