Skip to main content
Log in

Dependence of in-situ Bose condensate size on final frequency of RF-field in evaporative cooling

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We report the results of in-situ characterization of 87Rb atom cloud in a quadrupole Ioffe configuration (QUIC) magnetic trap after a radio-frequency (RF) evaporative cooling of the trapped atom cloud. The in-situ absorption images of the atom cloud have shown clear bimodal optical density (OD) profiles which indicate the Bose–Einstein condensation (BEC) phase transition in the trapped gas. Also, we report here, for the first time, the measured variation in the sizes of the condensate and thermal clouds with the final frequency selected in the frequency scan of the RF-field for evaporative cooling. These results on frequency-dependent sizes of the clouds are consistent with the theoretical understanding of the BEC phenomenon in the trap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. C S Adams and E Riis, Prog. Quantum. Electron. 21, 1 (1997) ISSN 0079-6727, http://www.sciencedirect.com/science/article/pii/ S0079672796000067

    Article  ADS  Google Scholar 

  2. M H Anderson, J R Ensher, M R Matthews, C E Wieman and E A Cornell, Science 269, 198 (1995), http://www. sciencemag.org/content/269/5221/198.full.pdf, http://www.sciencemag.org/ content/269/5221/198.abstract

  3. Proceedings of the International School of Physics, Enrico Fermi Course CXL, edited by M Inguscio, S Stringari and C E Wieman (IOS Press, Amsterdam, 1999)

  4. C O Dwyer, G Gay, B V de Lesegno, J Weiner, A Camposeo, F Tantussi, F Fuso, M Allegrini and E Arimondo, Nanotechnology 16, 1536 (2005), http://stacks.iop.org/0957-4484/16/i=9/a=022

  5. A D Ludlow, M M Boyd, J Ye, E Peik and P O Schmidt, Rev. Mod. Phys. 87, 637 (2015), DOI: 10.1103/ RevModPhys.87.637

    Article  ADS  Google Scholar 

  6. A Gauguet, B Canuel, T Lévèque, W Chaibi and A Landragin, Phys. Rev. A 80, 063604 (2009), DOI: 10.1103/PhysRevA.80.063604

    Article  ADS  Google Scholar 

  7. J Fang and J Qin, Sensors 12, 6331 (2012) ISSN 1424-8220, http://www.mdpi.com/1424-8220/12/5/6331

    Article  Google Scholar 

  8. Q Bodart, S Merlet, N Malossi, F P Dos Santos, P Bouyer and A Landragin, Appl. Phys. Lett. 96, 134101 (2010), http://scitation.aip.org/content/aip/journal/apl/96/13/10.1063/1.3373917

    Article  ADS  Google Scholar 

  9. N Behbood, F Martin Ciurana, G Colangelo, M Napolitano, M W Mitchell and R J Sewell, Appl. Phys. Lett. 102, 173504 (2013), http: //scitation.aip.org/content/aip/journal/apl/102/17/10.1063/1.4803684

    Article  ADS  Google Scholar 

  10. M Lewenstein, A Sanpera, V Ahufinger, B Damski, A Sen(De) and U Sen, Adv. Phys. 56, 243 (2007), DOI: 10.1080/00018730701223200

    Article  ADS  Google Scholar 

  11. M Inguscio and L Fallani, Atomic physics : Precise measurements and ultracold matter (Oxford University Press Inc, New York, 2013)

    Book  Google Scholar 

  12. O Morsch and M Oberthaler, Rev. Mod. Phys. 78, 179 (2006), DOI: 10.1103/RevModPhys.78.179

    Article  ADS  Google Scholar 

  13. I Bloch, J Dalibard and W Zwerger, Rev. Mod. Phys. 80, 885 (2008) (since 1996) 1892

    Article  ADS  Google Scholar 

  14. I Bloch, J Dalibard and S Nascimbene, Nat. Phys. 8, 267 (2012) ISSN 1745-2473, DOI: 10.1038/nphys2259

    Article  Google Scholar 

  15. S Inouye, M R Andrews, J Stenger, H-J Miesner, D M Stamper- Kurn and W Ketterle, Nature 392, 151 (1998) ISSN 0028-0836, DOI: 10.1038/32354

    Article  ADS  Google Scholar 

  16. C Chin, R Grimm, P Julienne and E Tiesinga, Rev. Mod. Phys. 82, 1225 (2010), DOI: 10.1103/RevModPhys.82.1225

    Article  ADS  Google Scholar 

  17. C Cohen-Tannoudji and D Guéry-Odelin, Advances in atomic physics : An overview (World Scientific Publishing Co. Ltd., Singapore, 2011)

    Book  MATH  Google Scholar 

  18. O Zobay and B M Garraway, Phys. Rev. Lett. 86, 1195 (2001), DOI: 10.1103/PhysRevLett.86.1195

    Article  ADS  Google Scholar 

  19. O Morizot, Y Colombe, V Lorent, H Perrin and B M Garraway, Phys. Rev. A 74, 023617 (2006), DOI: 10.1103/PhysRevA.74.023617

    Article  ADS  Google Scholar 

  20. A Chakraborty, S R Mishra, S P Ram, S K Tiwari and H S Rawat, J. Phys. B 49, 075304 (2016), http://stacks.iop.org/0953-4075/ 49/i=7/a=075304

    Article  ADS  Google Scholar 

  21. H F Hess, Phys. Rev. B 34, 3476 (1986)

    Article  ADS  Google Scholar 

  22. W Ketterle and N V Druten, Advances in atomic, molecular, and optical physics (Academic Press, 1996) Vol. 37, pp. 181–236, http:// www.sciencedirect.com/science/article/pii/S1049250X08601019

  23. M H Anderson, J R Ensher, M R Matthews, C E Wieman and E A Cornell, in: Laser Spectroscopy, XII International Conference edited by M Inguscio, M Allegrini and A Sasso (World Scientific, 1995) p. 3

  24. M D Barrett, J A Sauer, and M S Chapman, Phys. Rev. Lett. 87, 010404 (2001), DOI: 10.1103/PhysRevLett.87.010404

    Article  ADS  Google Scholar 

  25. C J Myatt, N R Newbury, R W Ghrist, S Loutzenhiser, and C E Wieman, Opt. Lett. 21, 290 (1996)

    Article  ADS  Google Scholar 

  26. S R Mishra, S P Ram, S K Tiwari and S C Mehendale, Phys. Rev. A 77, 065402 (2008)

    Article  ADS  Google Scholar 

  27. T Esslinger, I Bloch and T W Hänsch, Phys. Rev. A 58, R2664 (1998)

    Article  ADS  Google Scholar 

  28. S P Ram, S K Tiwari and S R Mishra, J. Korean Phys. Soc. 57, 1303 (2010)

    Article  Google Scholar 

  29. S P Ram, S R Mishra, S K Tiwari and S C Mehendale, Rev. Sci. Instrum. 82, 126108 (2011), http://link.aip.org/link/?RSI/82/126108/1

    Article  ADS  Google Scholar 

  30. S P Ram, S K Tiwari, S R Mishra and H S Rawat, Rev. Sci. Instrum. 84, 073102 (2013), http://link.aip.org/link/?RSI/84/073102/1

    Article  ADS  Google Scholar 

  31. S P Ram Studies on generation and manipulation of laser cooled atoms, Ph.D. thesis (Homi Bhabha National Institute, 2013)

  32. J Wang, J Wang, S Yan, T Geng and T Zhang, Rev. Sci. Instrum. 79, 123116 (2008)

    Article  ADS  Google Scholar 

  33. Y Shu-Bin, G Tao, Z Tian-Cai and W Jun-Min, Chin. Phys. 15, 1746 (2006), http://stacks.iop.org/1009-1963/15/i=8/a=019

    Article  ADS  Google Scholar 

  34. E Dimova, O Morizot, G Stern, C G Alzar, A Fioretti, V Lorent, D Comparat, H Perrin and P Pillet, Eur. Phys. J. D 42, 299 (2007)

    Article  ADS  Google Scholar 

  35. T B Swanson, D Asgeirsson, J A Behr, A Gorelov and D Melconian, J. Opt. Soc. Am. B 15, 2641 (1998)

    Article  ADS  Google Scholar 

  36. T P Meyrath Experiments with Bose–Einstein condensation in an optical box, Ph.D. thesis (University of Texas at Austin, 2005)

  37. M S Yoon, Experiments on magnetic transport, magnetic trapping and Bose–Einstein condensation, Ph.D. thesis (University of Oxford, 2009)

  38. J-F Schaff, P Capuzzi, G Labeyrie and P Vignolo, New J. Phys. 13, 113017 (2011), http://stacks.iop.org/1367-2630/13/i=11/a=113017

    Article  ADS  Google Scholar 

  39. W Petrich, M H Anderson, J R Ensher and E A Cornell, Phys. Rev. Lett. 74, 3352 (1995), DOI: 10.1103/ PhysRevLett.74.3352

    Article  ADS  Google Scholar 

  40. D E Pritchard, Phys. Rev. Lett. 51, 1336 (1983)

    Article  ADS  Google Scholar 

  41. B Lu and W A van Wijngaarden, Can. J. Phys. 82, 81 (2004)

  42. W Ketterle, D S Durfee and D M Stamper-Kurn, in: Proceedings of the International School of Physics – Enrico Fermi edited by M Inguscio, S Stringari and C E Wieman (IOS Press, 1999) p. 67

  43. D M Stamper-Kurn, H-J Miesner, S Inouye, M R Andrews and W Ketterle, Phys. Rev. Lett. 81, 500 (1998), DOI: 10.1103/PhysRevLett.81.500

    Article  ADS  Google Scholar 

  44. C C Bradley, C A Sackett, J J Tollett and R G Hulet, Phys. Rev. Lett. 75, 1687 (1995) ibid. 79, 1170 (1997)

    Article  ADS  Google Scholar 

  45. W Yu-Zhu, Z Shu-Yu, L Quan, Z Shan-Yu and F Hai-Xiang, Chin. Phys. Lett. 20, 799 (2003), http://stacks.iop.org/0256-307X/20/i= 6/a=306

    Article  ADS  Google Scholar 

  46. W Zhang, Z Xu and L You, Phys. Rev. A 72, 053627 (2005), DOI: 10.1103/PhysRevA.72.053627

    Article  ADS  Google Scholar 

  47. D S Durfee and W Ketterle, Opt. Express 2, 299 (1998), http://www.opticsexpress.org/abstract.cfm?URI=oe-2-8-299

    Article  ADS  Google Scholar 

  48. M Naraschewski and D M Stamper-Kurn, Phys. Rev. A 58, 2423 (1998), DOI: 10.1103/PhysRevA.58.2423

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank V B Tiwari, S Singh, V Singh, A Srivastava and A Chakraborty for their help in the experiments. They are also thankful to V Bhanage, P P Deshpande, S Tiwari, L Jain and A Pathak for developing the controller system, C Rajan and P Kumar for developing the switching circuitry, M Lad and P S Bagduwal for providing the RF amplifier, H S Vora for image processing software, K V A N P S Kumar and S K Shukla for help in the vacuum system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S R MISHRA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MISHRA, S.R., RAM, S.P., TIWARI, S.K. et al. Dependence of in-situ Bose condensate size on final frequency of RF-field in evaporative cooling. Pramana - J Phys 88, 59 (2017). https://doi.org/10.1007/s12043-017-1364-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-017-1364-5

Keywords

PACS Nos

Navigation