Skip to main content
Log in

Vibrational resonance in the Morse oscillator

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The occurrence of vibrational resonance is investigated in both classical and quantum mechanical Morse oscillators driven by a biharmonic force. The biharmonic force consists of two forces of widely different frequencies ω and Ω with Ω ≫ ω. In the damped and biharmonically driven classical Morse oscillator, by applying a theoretical approach, an analytical expression is obtained for the response amplitude at the low-frequency ω. Conditions are identified on the parameters for the occurrence of resonance. The system shows only one resonance and moreover at resonance the response amplitude is 1/ where d is the coefficient of linear damping. When the amplitude of the high-frequency force is varied after resonance the response amplitude does not decay to zero but approaches a nonzero limiting value. It is observed that vibrational resonance occurs when the sinusoidal force is replaced by a square-wave force. The occurrence of resonance and antiresonance of transition probability of quantum mechanical Morse oscillator is also reported in the presence of the biharmonic external field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. L Gammaitoni, P Hänggi, P Jung and F Marchesoni, Rev . Mod. Phys. 70, 223 (1998)

    Article  ADS  Google Scholar 

  2. M D McDonnell, N G Stocks, C E M Pearce and D Abbott, Stochastic resonance (Cambridge University Press, Cambridge, 2008)

    Book  MATH  Google Scholar 

  3. P S Landa and P V E McClintock, J. Phys. A: Math. Gen. 33, L433 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  4. M Gittermann, J. Phys. A: Math. Gen. 34, L355 (2001)

    Article  ADS  Google Scholar 

  5. I I Blechman and P S Landa, Int. J. Nonlin. Mech. 39, 421 (2004)

    Article  Google Scholar 

  6. V In, A Kho, J D Neff, A Palacios, P Loghini and B K Meadows, Phys. Rev . Lett. 91, 244101 (2003)

    Article  ADS  Google Scholar 

  7. V In, A R Bulsara, A Palacios, P Loghini and A Kho, Phys. Rev . E 72, 045104(R) (2005)

    Article  ADS  Google Scholar 

  8. B J Breen, A B Doud, J R Grimm, A H Tanasse, S J Janasse, J F Lindner and K J Maxted, Phys. Rev . E 83, 037601 (2011)

    Article  ADS  Google Scholar 

  9. E Ippen, J Lindner and W L Ditto, J. Stat. Phys. 70, 437 (1993)

    Article  ADS  Google Scholar 

  10. S Zambrano, J M Casado and M A F Sanjuan, Phys. Lett. A 366, 428 (2007)

    Article  ADS  Google Scholar 

  11. S Jeyakumari, V Chinnathambi, S Rajasekar and M A F Sanjuan, Phys. Rev . E 80, 046608 (2009)

    Article  ADS  Google Scholar 

  12. S Rajasekar, K Abirami and M A F Sanjuan, Chaos 21, 033106 (2011)

    Article  Google Scholar 

  13. E Ullner, A Zaikin, J Garcia-Ojalvo, R Bascones and J Kurths, Phys. Lett. A 312, 348 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  14. H Yu, J Wang, C Liu, B Deng and X Wei, Chaos 21, 043101 (2011)

    Article  Google Scholar 

  15. V M Gandhimathi, S Rajasekar and J Kurths, Phys. Lett. A 360, 279 (2006)

    Article  ADS  MATH  Google Scholar 

  16. B Deng, J Wang and X Wei, Chaos 19, 013117 (2009)

    Article  ADS  Google Scholar 

  17. B Deng, J Wang, X Wei, K M Tsang and W L Chan, Chaos 19, 013113 (2010)

    Article  Google Scholar 

  18. V N Chizhevsky, E Smeu and G Giacomelli, Phys. Rev . Lett. 91, 220602 (2003)

    Article  ADS  Google Scholar 

  19. V N Chizhevsky and G Giacomelli, Phys. Rev . E 70, 062101 (2004)

    Article  ADS  Google Scholar 

  20. V N Chizhevsky and G Giacomelli, Phys. Rev . E 73, 022103 (2006)

    Article  ADS  Google Scholar 

  21. J P Baltanas, L Lopez, I I Blechman, P S Landa, A Zaikin, J Kurths and M A F Sanjuan, Phys. Rev . E 67, 066119 (2003)

    Article  ADS  Google Scholar 

  22. C Yao, Y Liu and M Zhan, Phys. Rev . E 83, 061122 (2011)

    Article  ADS  Google Scholar 

  23. C Yao and M Zhan, Phys. Rev . E 81, 061129 (2010)

    Article  ADS  Google Scholar 

  24. S Rajasekar, J Used, A Wagemakers and M A F Sanjuan, Commun. Nonlin. Sci. Numer. Simulat. 17, 3435 (2012)

    Article  ADS  MATH  Google Scholar 

  25. S Jeyakumari, V Chinnathambi, S Rajasekar and M A F Sanjuan, Chaos 21, 275 (2011)

    MATH  Google Scholar 

  26. J H Yang and X B Liu, J. Phys. A: Math. Theor. 43, 122001 (2010)

    Article  ADS  Google Scholar 

  27. J H Yang and X B Liu, Chaos 20, 033124 (2010)

    Article  Google Scholar 

  28. C Jeevarathinam, S Rajasekar and M A F Sanjuan, Phys. Rev . E 83, 066205 (2011)

    Article  ADS  Google Scholar 

  29. J H Yang and X B Liu, Phys. Scr. 83, 065008 (2011)

    Article  Google Scholar 

  30. A Ichiki, Y Tadokoro and M I Dykman, Phys. Rev . E 85, 031107 (2012)

    Article  Google Scholar 

  31. J R Ackerhalt and P W Milonni, Phys. Rev . A 34, 1211 (1986)

    Article  ADS  Google Scholar 

  32. M E Goggin and P W Milonni, Phys. Rev . A 37, 796 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  33. D Beigie and S Wiggins, Phys. Rev . A 45, 4803 (1992)

    Article  ADS  Google Scholar 

  34. A Memboeuf and S Aubry, Physica D 207, 1 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  35. W Knob and W Lauterborn, J. Chem. Phys. 93, 3950 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  36. Z Jing, J Deng and J Yang, Chaos, Solitons and Fractals 35, 486 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. K T Tang, Mathematical methods for engineers and scientists: Fourier analysis, partial differential equations and v ariational models (Springer, Berlin, 2007) p. 191

    Google Scholar 

  38. A Frank, R Lemus, M Carvajal, C Jung and E Ziemniak, Chem. Phys. Lett. 308, 91 (1999)

    Article  ADS  Google Scholar 

  39. R Lemus and A Frank, Chem. Phys. Lett. 349, 471 (2001)

    Article  ADS  Google Scholar 

  40. R Lemus, J. Mol. Spectrosc. 225, 73 (2004)

    Article  ADS  Google Scholar 

  41. L I Schiff, Quantum mechanics (McGraw-Hill, New York, 1968)

    Google Scholar 

Download references

Acknowledgements

KA acknowledges the support from University Grants Commission (UGC), India in the form of UGC-Rajiv Gandhi National Fellowship. Financial support from the Spanish Ministry of Science and Innovation under Project No. FIS2009-09898 is acknowledged by MAFS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S RAJASEKAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ABIRAMI, K., RAJASEKAR, S. & SANJUAN, M.A.F. Vibrational resonance in the Morse oscillator. Pramana - J Phys 81, 127–141 (2013). https://doi.org/10.1007/s12043-013-0546-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-013-0546-z

Keywords

PACS Nos

Navigation