Skip to main content
Log in

Multiple dynamical time-scales in networks with hierarchically nested modular organization

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Many natural and engineered complex networks have intricate mesoscopic organization, e.g., the clustering of the constituent nodes into several communities or modules. Often, such modularity is manifested at several different hierarchical levels, where the clusters defined at one level appear as elementary entities at the next higher level. Using a simple model of a hierarchical modular network, we show that such a topological structure gives rise to characteristic time-scale separation between dynamics occurring at different levels of the hierarchy. This generalizes our earlier result for simple modular networks, where fast intramodular and slow intermodular processes were clearly distinguished. Investigating the process of synchronization of oscillators in a hierarchical modular network, we show the existence of as many distinct time-scales as there are hierarchical levels in the system. This suggests a possible functional role of such mesoscopic organization principle in natural systems, viz., in the dynamical separation of events occurring at different spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M E J Newman, Networks: An introduction (Oxford University Press, New York, 2010)

    MATH  Google Scholar 

  2. S Dasgupta, R K Pan and S Sinha, Phys. Rev. E80, 025101 (2009)

    ADS  Google Scholar 

  3. S Sinha, in Dynamics on and of complex networks edited by N Ganguly, A Deutsch and A Mukherjee (Birkhauser, Boston, 2009) p. 3

    Chapter  Google Scholar 

  4. S Sinha, T Jesan and N Chatterjee, in Current trends in science edited by N Mukunda (Indian Academy of Sciences, Bangalore, 2009) p. 199

    Google Scholar 

  5. A-L Barabási and R Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  6. D J Watts and S H Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  7. R K Pan and S Sinha, Europhys. Lett. 85, 68006 (2009)

    Article  ADS  Google Scholar 

  8. R K Pan and S Sinha, Pramana – J. Phys. 71, 331 (2008)

    Article  ADS  Google Scholar 

  9. M E J Newman, Proc. Natl Acad. Sci. USA 103, 8577 (2006)

    Article  ADS  Google Scholar 

  10. H Simon, Proc. Am. Phil. Soc. 106, 467 (1962)

    Google Scholar 

  11. E Ravasz, A L Somera, D A Mongru, Z N Oltvai and A-L Barabási, Science 297, 1551 (2002)

    Article  ADS  Google Scholar 

  12. U Bastolla, M A Fortuna, A Pascual-Garci, A Ferrera, B Luque and J Bascompte, Nature 458, 1018 (2009)

    Article  ADS  Google Scholar 

  13. W-X Zhou, D Sornette, R A Hill and R I M Dunbar, Proc. Roy. Soc. London B272, 439 (2005)

    Google Scholar 

  14. M J Hamilton, B T Milne, R S Walker, O Burger and J H Brown, Proc. Roy. Soc. London B274, 2195 (2007)

    Google Scholar 

  15. G Leibon, S Pauls, D Rockmore and R Savell, Proc. Natl Acad. Sci. USA 105, 20589 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. C Zhou, L Zemanova, G Zamora-Lopez, C C Hilgetag and J Kurths, New J. Phys. 9, 178 (2007)

    Article  ADS  Google Scholar 

  17. D S Bassett, D L Greenfield, A Meyer-Lindenberg, D R Weinberger, S W Moore and E T Bullmore, PLoS Comput. Biol. 6, e1000748 (2010)

    Article  Google Scholar 

  18. J W Scannell, C Blakemore and M P Young, J. Neurosci. 15, 1463 (1995)

    Google Scholar 

  19. C J Honey, R Kötter, M Breakspear and O Sporns, Proc. Natl Acad. Sci. USA 104, 10240 (2007)

    Article  ADS  Google Scholar 

  20. E Ravasz and A-L Barabási, Phys. Rev. E67, 026112 (2003)

    ADS  Google Scholar 

  21. Note that if the synchronization time diverges rapidly, we may not observe synchronization beyond a certain level within a reasonable period of observation and thus, global synchronization may never be achieved.

  22. S H Strogatz, Nature 410, 268 (2001)

    Article  ADS  Google Scholar 

  23. A Goldbeter, Biochemical oscillations and cellular rhythms (Cambridge University Press, Cambridge, 1997)

    Google Scholar 

  24. A T Winfree, The geometry of biological time (Springer, New York, 2000)

    Google Scholar 

  25. J Acebrón, L Bonilla, C P Vicente, F Ritort and R Spigler, Rev. Mod. Phys. 77, 137 (2005)

    Article  ADS  Google Scholar 

  26. A Arenas, A Díaz-Guilera and C J Pérez-Vicente, Phys. Rev . Lett. 96, 114102 (2006)

    Article  ADS  Google Scholar 

  27. C Zhou and J Kurths, Chaos 16, 015104 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  28. E D Lumer and B A Huberman, Phys. Lett. A160, 227 (1991)

    ADS  Google Scholar 

  29. E D Lumer and B A Huberman, Neural Comput. 4, 341 (1992)

    Article  Google Scholar 

  30. G Zamora-López, C Zhou and J Kurths, Frontiers in Neuroinformatics 4, 1 (2010)

    Google Scholar 

  31. R K Pan, N Chatterjee and S Sinha, PLoS ONE 5, e9240 (2010)

    Article  ADS  Google Scholar 

  32. N Pradhan, S Dasgupta and S Sinha, Europhys. Lett. 94, 38004 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SITABHRA SINHA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SINHA, S., PORIA, S. Multiple dynamical time-scales in networks with hierarchically nested modular organization. Pramana - J Phys 77, 833–842 (2011). https://doi.org/10.1007/s12043-011-0196-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0196-y

Keywords

PACS Nos

Navigation