Skip to main content
Log in

Travelling wave solutions to nonlinear physical models by means of the first integral method

  • Published:
Pramana Aims and scope Submit manuscript

Abstract.

This paper presents the first integral method to carry out the integration of nonlinear partial differential equations in terms of travelling wave solutions. For illustration, three important equations of mathematical physics are analytically investigated. Through the established first integrals, exact solutions are successfully constructed for the equations considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R M Miura, Backlund transformation (Springer-Verlag, New York, 1973)

    Google Scholar 

  2. J Weiss, M Tabor and G Carnevale, J. Math. Phys. 24, 522 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M J Ablowitz and H Segur, Solitons and inverse scattering transform (SIAM, Philadelphia, 1981)

    Book  MATH  Google Scholar 

  4. G W Bluman and S Kumei, Symmetries and differential equations (Springer-Verlag, New York, 1989)

    MATH  Google Scholar 

  5. R Hirota, The direct method in soliton theory (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  6. C Yan, Phys. Lett. A224, 77 (1996)

    ADS  Google Scholar 

  7. W Malfliet and W Hereman, Phys. Scr. 54, 563 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. G T Liu and T Y Fan, Phys. Lett. A345, 161 (2005)

    MathSciNet  ADS  Google Scholar 

  9. M Wang, X Li and J Zhang, Phys. Lett. A372, 417 (2008)

    MathSciNet  ADS  Google Scholar 

  10. J H He and X H Wu, Chaos, Solitons and Fractals 30, 700 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Z Feng and X Wang, Phys. Scr. 64, 7 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Z Feng, Phys. Lett. A293, 57 (2002)

    ADS  Google Scholar 

  13. Z S Feng, J. Phys. A: Math. Gen. 35, 343 (2002)

    Article  ADS  MATH  Google Scholar 

  14. Z Feng and R Knobel, J. Math. Anal. Appl. 328, 1435 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. X Deng, Appl. Math. Comput. 204, 733 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Naranmandula and K X Wang, Chin. Phys. 13, 139 (2004)

    Article  ADS  Google Scholar 

  17. H Li and Y Guo, Appl. Math. Comput. 180, 524 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. K R Raslan, Nonlin. Dyn. 53, 281 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. K Yun-Quan and Y Jun, Commun. Theor. Phys. 43, 597 (2005)

    Article  Google Scholar 

  20. J Lu, G Yu-Cui and X Shu-Jiang, Chin. Phys. 16, 2514 (2007)

    Article  ADS  Google Scholar 

  21. S Abbasbandy and A Shirzadi, Commun. Nonlinear Sci. Numer. Simulat. 15, 1759 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. T R Ding and C Z Li, Ordinary differential equations (Peking University Press, Peking, 1996)

    Google Scholar 

  23. Z Feng, Electron J. Linear Algebra 8, 14 (2001)

    MathSciNet  MATH  Google Scholar 

  24. N Bourbaki, Commutative algebra (Addison-Wesley, Paris, 1972)

    MATH  Google Scholar 

  25. R K Dodd et al, Soliton and nonlinear waves (Academic Press, London, 1982)

    Google Scholar 

  26. Z Y Yan, F D Xie and H Q Zhang, Commun. Theor. Phys. 36, 1 (2001)

    MathSciNet  MATH  Google Scholar 

  27. G B Whitham, Proc. R. Soc. London Ser. A299, 6 (1967)

    Article  ADS  Google Scholar 

  28. R Ivanov, J. Nonlinear Math. Phys. 1294, 462 (2005)

    Google Scholar 

  29. B Fornberg and G B Whitham, Philos. Trans. R. Soc. London Ser. A289, 373 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  30. J Zhou and L Tian, J. Math. Anal. Appl. 346, 255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. J Zhou and L Tian, Nonlinear Anal. Real World Appl. 11, 356 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İSMAİL ASLAN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

ASLAN, İ. Travelling wave solutions to nonlinear physical models by means of the first integral method. Pramana - J Phys 76, 533–542 (2011). https://doi.org/10.1007/s12043-011-0062-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0062-y

Keywords.

PACS Nos

Navigation