Skip to main content
Log in

Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

We investigate the usefulness of the highly entangled five-partite cluster and Brown states for the quantum information splitting (QIS) of a special kind of two-qubit state using remote state preparation. In our schemes, the information that is to be shared is known to the sender. We show that, QIS can be accomplished with just two classical bits, as opposed to four classical bits, when the information that is to be shared is unknown to the sender. The present algorithm, demonstrated through the cluster and Brown states is deterministic as compared to the previous works in which it was probabilistic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MA Nielsen and I L Chuang, Quantum computation and quantum information, (Cambridge University Press, 2002)

  2. M B Plenio and S Virmani, Quantum Inf. Comput. 7, 1 (2007)

    MATH  MathSciNet  Google Scholar 

  3. C H Bennett, G Brassard, C Crepeau, R Jozsa, A Peres and W K Wootters, Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. D Bouwmeester, J W Pan, K Mattle, M Eibl, H Weinfurter and A Zeilinger, Nature (London) 390, 575 (1997)

    Article  ADS  Google Scholar 

  5. M Riebe, H Hffner, C F Roos, W Hnsel, J Benhelm, G P T Lancaster, T W Krber, C Becher, F S Kaler, D F V James and R Blatt, Nature (London) 429, 734 (2004)

    Article  ADS  Google Scholar 

  6. M D Barrett, J Chiaverini, T Schaetz, J Britton, W M Itano, J D Jost, E Knill, C Langer, D Leibfried, R Ozeri and D J Wineland, Nature (London) 429, 737 (2004)

    Article  ADS  Google Scholar 

  7. G Rigolin, Phys. Rev. A71, 032303 (2005)

    ADS  Google Scholar 

  8. Y Yeo and W K Chua, Phys. Rev. Lett. 96, 060502 (2006)

    Article  ADS  Google Scholar 

  9. S Muralidharan and P K Panigrahi, Phys. Rev. A77, 032321 (2008)

    ADS  Google Scholar 

  10. S Muralidharan and P K Panigrahi, eprint quant-ph/0802.3484

  11. Q Zhang, A Goebel, C Wagenknecht, Y A Chen, B Zhao, T Yang, A Mair, J Schmiedmayer and J W Pan, Nature (London) 2, 678 (2006)

    ADS  Google Scholar 

  12. D D B Rao, P K Panigrahi and C Mitra, Phys. Rev. A78, 022336 (2008)

    ADS  Google Scholar 

  13. M Hillery, V Buzek and A Berthiaume, Phys. Rev. A59, 1829 (1999)

    MathSciNet  ADS  Google Scholar 

  14. S B Zheng, Phys. Rev. A74, 054303 (2006)

    ADS  Google Scholar 

  15. C Schmid, P Trojek, M Bourennane, C Kurtsiefer, M Zukowski and H Weinfurter, Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  16. A K Pati, Phys. Rev. A63, 014302 (2000)

    MathSciNet  ADS  Google Scholar 

  17. C H Bennett, D P DiVincenzo, P W Shor, J A Smolin, B M Terhal and W K Wootters, Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  18. S Muralidharan and P K Panigrahi, eprint quant-ph/0802.0781

  19. R Raussendorf and H J Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  ADS  Google Scholar 

  20. I D K Brown, S Stepney, A Sudbery and S L Braunstein, J. Phys. A38, 1119 (2005)

    MathSciNet  ADS  Google Scholar 

  21. P Agrawal and B Pradhan, eprint quant-ph/0707.4295v2

  22. A Borras, A R Plastino, J Batle, C Zander, M Casas and A Plastino, J. Phys. A: Math. Gen. 40, 13407 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Z J Zhang and C Y Cheung, J. Phys. B: At. Mol. Opt. Phys. 41, 015503 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panigrahi, P.K., Karumanchi, S. & Muralidharan, S. Minimal classical communication and measurement complexity for quantum information splitting of a two-qubit state. Pramana - J Phys 73, 499–504 (2009). https://doi.org/10.1007/s12043-009-0102-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-009-0102-z

Keywords

PACS Nos

Navigation