Skip to main content
Log in

Magnetic field dependence of vortex activation energy: A comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

The dissipative mechanism at low current density is compared in three different classes of superconductors. This is achieved by measuring the resistance as a function of temperature and magnetic field in clean polycrystalline samples of NbSe2, MgB2 and Bi2Sr2Ca2Cu3O10 (BSCCO) superconductors. Thermally activated flux flow behaviour is seen in all the three systems and clearly identified in bulk MgB2. While the activation energy at low fields for MgB2 is comparable to Bi2Sr2Ca2Cu3O10, its field dependence follows a parabolic behaviour unlike a power-law dependence seen in Bi2Sr2Ca2Cu3O10. We analyse our results based on Kramer’s scaling for grain boundary pinning in MgB2 and NbSe2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S Kang, A Goyal, J Li, A A Gapud, P M Martin, L Heatherly, J R Thompson, D K Christen, F A List, M Paranthaman and D F Lee, Science 311, 1911 (2006)

    Article  ADS  Google Scholar 

  2. Song Xueyan, G Daniels, D M Feldmann, A Gurevich and D Larbalestier, Nature Mater. 4, 470 (2005)

    Article  ADS  Google Scholar 

  3. T T M Palstra, B Batlogg, R B Van Dover, L F Schneemeyer and J V Waszczak, Phys. Rev. B41, 6621 (1990)

    ADS  Google Scholar 

  4. A Gurevich, Supcond. Sci. Technol. 17, 278 (2004)

    Article  ADS  Google Scholar 

  5. P Grant, Nature (London) 441, 532 (2001)

    Article  ADS  Google Scholar 

  6. T Masui, S Lee and S Tajima, Physica C383, 299 (2003)

    ADS  Google Scholar 

  7. G Blatter, M V Feigel’man, V B Geshkenbein, A I Larkin and V M Vinokur, Rev. Mod. Phys. 66, 1125 (1994)

    Article  ADS  Google Scholar 

  8. M Pissas, S Lee, A Yamamoto and S Tajima, Phys. Rev. Lett. 89, 097002 (2002)

    Google Scholar 

  9. M Angst, R Puzniak, A Wisniewski, J Jun, S M Kazakov and J Karpinski, Phys. Rev. B67, 012502 (2003)

    ADS  Google Scholar 

  10. J D Fletcher, A Carrington, P Diener, P Rodiere, J P Brison, R Prozorov, T Olheiser and R W Giannetta, Phys. Rev. Lett. 98, 057003 (2007)

    Google Scholar 

  11. S Patnaik, A Gurevich, S D Bu, S D Kaushik, J Choi, C B Eom and D C Larbalestier, Phys. Rev. B70, 064503 (2004)

    Google Scholar 

  12. G Q Yuan, J K F Yau, Y S Han, D W Lu, X N Xu, L J Shen, X Jin and Y N Wang, Physica C386, 621 (2003)

    ADS  Google Scholar 

  13. J Jiang, X Y Cai, J G Chandler, M O Rikel, E E Hellstrom, R D Parrella, Yu Dingan, Q Li, M W Rupich, G N Riley and D C Larbalestier, IEEE Trans. Appl. Supercond. 11, 3561 (2001)

    Article  Google Scholar 

  14. V Braccini, L D Cooley, S Patnaik, D C Larbalestier, P Manfrinetti, A Palezona, A S Siri, Appl. Phys. Lett. 81, 4577 (2002)

    Article  ADS  Google Scholar 

  15. K Nato, S Morohashi, K Arfikawa and Y Muto, Physica B99, 204 (1980)

    Google Scholar 

  16. J M Rowell, Supcond. Sci. Technol. 16, R17 (2003)

    Article  ADS  Google Scholar 

  17. M J Qin, X L Wang, S Soltain, A H Li, H K Liu and S X Dou, Phys. Rev. B64, 060505 (2001)

  18. J Bardeen and M J Stephen, Phys. Rev. A140, 1197 (1965)

    Article  ADS  Google Scholar 

  19. J R Thompson, K D Sorge, C Cantoni, H R Kerchner, D K Christen and M Paranthaman, Supcond. Sci. Technol. 18, 970 (2005)

    Article  ADS  Google Scholar 

  20. X L Wang, A H Li, S Yu, S Ooi, K Hirata, C T Lin, E W Collings, M D Sumption, M Bhatia, S Y Ding and S X Dou, J. Appl. Phys. 97, 10B114-1 (2005)

  21. E J Cramer, J. Appl. Phys. 44, 1360 (1973)

    Article  ADS  Google Scholar 

  22. Lance Cooley, Xueyan Song and David Larbalestier, IEEE Trans. Appl. Supercond. 13, 3280 (2003)

    Article  Google Scholar 

  23. M Ikebe, K Katagiri, K Nato and Y Muto, Physica B99, 209 (1980)

    Google Scholar 

  24. J R Thompson, M Paranthaman, D K Christen, K D Sorge, H J Kim and J G Ossandon, Supcond. Sci. Technol. 14, L17 (2001)

    Article  ADS  Google Scholar 

  25. Quiang Li, M Suenaga, Junho Gohang, D K Finnemore, T Hikata and K Sato, Phys. Rev. B46, 3195 (1992)

    ADS  Google Scholar 

  26. Qiang Li, Y Fukumoto, Y Zhu, M Suenaga, T Kaneko, K Sato and Ch Simon, Phys. Rev. B54, R788 (1996)

    ADS  Google Scholar 

  27. K Fossheim and A Sudbø, Superconductivity: Physics and applications, 1st edition (John Wiley & Sons Ltd, 2004) p. 207

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Patnaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaushik, S.D., Braccini, V. & Patnaik, S. Magnetic field dependence of vortex activation energy: A comparison between MgB2, NbSe2 and Bi2Sr2Ca2Cu3O10 superconductors. Pramana - J Phys 71, 1335–1343 (2008). https://doi.org/10.1007/s12043-008-0187-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-008-0187-9

Keywords

PACS Nos

Navigation