Skip to main content
Log in

Shape changing collisions of optical solitons, universal logic gates and partially coherent solitons in coupled nonlinear Schrödinger equations

  • Theoretical Aspects Of Optical Solitons
  • Published:
Pramana Aims and scope Submit manuscript

Abstract

Coupled nonlinear Schrödinger equations (CNLS) very often represent wave propagation in optical media such as multicore fibers, photorefractive materials and so on. We consider specifically the pulse propagation in integrable CNLS equations (generalized Manakov systems). We point out that these systems possess novel exact soliton type pulses which are shape changing under collision leading to an intensity redistribution. The shape changes correspond to linear fractional transformations allowing for the possibility of construction of logic gates and Turing equivalent all optical computers in homogeneous bulk media as shown by Steiglitz recently. Special cases of such solitons correspond to the recently much discussed partially coherent stationary solitons (PCS). In this paper, we review critically the recent developments regarding the above properties with particular reference to 2-CNLS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example, several articles in the Focus Issue on “Optical Solitons — Perspectives and Applications” in Chaos 10(3) (2000)

  2. M Segev and G Stegeman, Phys. Today 8, 43 (1998)

    Google Scholar 

  3. A Hasegawa, Chaos 10, 475 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. G P Agrawal, Nonlinear fiber optics, second edition (Academic Press, New York, 1995)

    Google Scholar 

  5. S Chakravarty, M J Ablowitz, J R Sauer and R B Jenkins, Opt. Lett. 20, 136 (1995)

    Article  ADS  Google Scholar 

  6. C Yeh and L Bergman, Phys. Rev. E57, 2398 (1998)

    ADS  Google Scholar 

  7. A C Scott, Phys. Scr. 29, 279 (1984)

    Article  ADS  Google Scholar 

  8. M Mitchell, Z Chen, M F Shih and M Segev, Phys. Rev. Lett. 77, 490 (1996)

    Article  ADS  Google Scholar 

  9. M Mitchell and M Segev, Nature 387, 880 (1997)

    Article  ADS  Google Scholar 

  10. D N Christodoulides, T H Coskun, M Mitchell and M Segev, Phys. Rev. Lett. 78, 646 (1997)

    Article  ADS  Google Scholar 

  11. D N Christodoulides, T H Coskun and R I Joseph, Opt. Lett. 22, 1080 (1997)

    ADS  Google Scholar 

  12. A W Snyder and D J Mitchell, Phys. Rev. Lett. 80, 1422 (1998)

    Article  ADS  Google Scholar 

  13. A Ankiewicz, W Krolikowski and N N Akhmediev, Phys. Rev. E59, 6079 (1999)

    ADS  Google Scholar 

  14. N Akhmediev, W Krolikowski and A W Snyder, Phys. Rev. Lett. 81, 4632 (1998)

    Article  ADS  Google Scholar 

  15. N Akhmediev and A Ankiewicz, Chaos 10, 600 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  16. S V Manakov, Zh. Eksp. Teor. Fiz. 65, 505 (1973); Sov. Phys. JETP 38, 248 (1974)

    ADS  Google Scholar 

  17. R Radhakrishnan, M Lakshmanan and J Hietarinta, Phys. Rev. E56, 2213 (1997)

    ADS  Google Scholar 

  18. T Kanna and M Lakshmanan, Phys. Rev. Lett. 86, 5043 (2001)

    Article  ADS  Google Scholar 

  19. M H Jakubowski, K Steiglitz and R Squier, Phys. Rev. E58, 6752 (1998)

    ADS  Google Scholar 

  20. K Steiglitz, Phys. Rev. E63, 016608 (2000)

    ADS  Google Scholar 

  21. R Radhakrishnan, R Sahadevan and M Lakshmanan, Chaos, Solitons and Fractals 5, 2315 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  22. R Sahadevan, K M Tamizhmani and M Lakshmanan, J. Phys. A19, 1783 (1986)

    ADS  MathSciNet  Google Scholar 

  23. V G Makhan’kov and O K Pashaev, Theor. Math. Phys. 53, 979 (1982)

    Article  MathSciNet  Google Scholar 

  24. K Nakkeeran, Phys. Rev. E62, 1313 (2000)

    ADS  MathSciNet  Google Scholar 

  25. D N Christodoulides and M I Carvalho, J. Opt. Soc. Am. B12, 1628 (1995)

    ADS  Google Scholar 

  26. N Kukhtarev, V B Markov, S G Odulov, M S Soskin and V L Vinetskii, Ferroelectrics 22, 949 (1979)

    Google Scholar 

  27. M J Ablowitz and H Segur, Solitons and the inverse scattering transform (Siam, Philadelphia, 1981)

    MATH  Google Scholar 

  28. R Hirota, J. Math. Phys. (N.Y.) 14, 805 (1973)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. M Lakshmanan, T Kanna and R Radhakrishnan, Rep. Math. Phys. 46, 143 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. T Kanna and M Lakshmanan (to be published)

  31. M J Ablowitz and A S Fokas, Complex variables, Cambridge texts in applied mathematics, (Cambridge University Press, 1997)

  32. J U Kang, G I Stegeman, J S Aitchison and N Akhmediev, Phys. Rev. Lett. 76, 3699 (1996)

    Article  ADS  Google Scholar 

  33. C Anastassiou, M Segev, K Steiglitz, J A Giordmaime, M Mitchell, Ming-fong Shih, S Lan and J Martin, Phys. Rev. Lett. 83, 2332 (1999)

    Article  ADS  Google Scholar 

  34. W Krolikowski, N Akhmediev and B Luther-Davies, Phys. Rev. E59, 4654 (1999)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakshmanan, M., Kanna, T. Shape changing collisions of optical solitons, universal logic gates and partially coherent solitons in coupled nonlinear Schrödinger equations. Pramana - J Phys 57, 885–916 (2001). https://doi.org/10.1007/s12043-001-0005-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-001-0005-0

Keywords

PACS Nos

Navigation