Skip to main content
Log in

QTL Analysis for Root Protein in a Backcross Family of Cassava Derived from Manihot esculenta ssp flabellifolia

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Root protein content of elite cassava is very low, largely due to breeder’s selection for other agronomic traits mainly fresh weight yield and disease resistance. Increased protein content in the root of cassava will improve its usefulness as a more complete food source in the developing world. An inter-specific F1 hybrid CW 198 - 11 was earlier developed at International Center for Tropical Agriculture (CIAT), Cali, Colombia by genetic crosses of OW 230 - 1 (FLA 441 - 5) and CW 30–65 (an inter-specific hybrid between an improved cassava variety SG 427 - 87 and an accession of Manihot esculenta ssp flabellifolia (MESCFLAX – 80)). The inter-specific cross was ‘backcrossed’, in the sense of another cross to cassava (MTAI – 8) to generate a B1P2 family with 225 progenies in which major quantitative trait loci (QTL) for root protein in the backcross population of cassava were identified. A linkage map from the female parent of the backcross population was used for QTL detection. A total of three QTL (protg.7, protg.13 and protg.23) controlling protein were identified in three different environments. One QTL was expressed across all three environments. These results demonstrated high broad sense heritability of 61.6% for protein over 2 years, in two different locations. The individual effects of alleles at these QTL explained from 15% to 25% of the phenotypic variance. The consistency of QTL controlling protein across environments reveals their potential for use in marker-assisted recurrent selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agronomix Software, Inc. and Agrobase 1998 Addendum (2000) Agrobase™, 71Waterloo St. Winnipeg, Manitoba, Canada

  • Akinbo OA (2008) Introgression of high protein and pest resistance genes from inter-specific hybrids of Manihot esculenta ssp flabellifolia into cassava (Manihot esculenta Crantz) PhD thesis, University of the Free State, Bloemfontain, South Africa. 266p.

  • Akinbo O, Labuschagne M, Fregene M (2010) Embryo rescue as a method to develop and multiply a backcross population of cassava (M. esculenta Crantz) from an interspecific cross of Manihot esculenta ssp flabellifolia. Afr J Biotechnol 9:7058–7062

    Google Scholar 

  • Akinbo O, Labuschagne M, Fregene M (2011) Introgression of whitefly (Aleurotrachelus socialis) resistance gene from F1 inter-specific hybrids into commercial cassava. Euphytica 183:19–26

    Article  Google Scholar 

  • Balyejusa Kizito EB, Rönnberg-Wästiljung A-C, Egwang T, Gullberg U, Fregene M, Westerbergh A (2007) Quantitative trait loci controlling cyanogenic glucoside and dry matter content in cassava (Manihot esculenta Crantz) roots. Hereditas 00:00–00. doi:10.1111/j.2007.0018-0661.01975.x

    Google Scholar 

  • Benesi IRM, Labuschagne MT, Dixon AGO, Mahungu NM (2004) Genotype X environment interaction effects on native cassava starch quality and potential for starch in the commercial sector. Afr Crop Sci J 12:205–216

    Google Scholar 

  • Blair MW, Giraldo MC, Buendía HF, Tovar E, Duque MC, Beebe SE (2006) Microsatellite marker diversity in common bean ( Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    Article  PubMed  CAS  Google Scholar 

  • Bonierbale M, Iglesias C, Kawano K (1995) Genetic resources management of cassava at CIAT. In: Root and Tuber Crops, Research Council Secretariat of MAFF and National Institute of Agrobiological Resources, Tsukuba, Japan 39–52p.

  • Burns A, Gleadow R, Cliff J, Zacarias A, Cavagnaro T (2010) Cassava: the drought, war and famine crop in a changing world. Sustain 2:3572–3607

    Article  Google Scholar 

  • Cach NT, Lenis JI, Pérez JC, Morante N, Calle F, Ceballos H (2005) Inheritance of useful traits in cassava grown in sub-humid conditions. Plant Breed 125:177–182

    Article  Google Scholar 

  • Ceballos H, Sánchez T, Chávez AL, Iglesias C, Debouck D, Mafla G, Tohme J (2006) Variation in crude protein content in cassava (Manihot esculenta Crantz) roots. J Food Compos Anal 19:589–593

    Article  CAS  Google Scholar 

  • Chávez AL, Sánchez T, Jaramillo G, Bedoya JM, Echeverry J, Bolanos EA, Ceballos H, Iglesias CA (2005) Variation of quality traits in cassava evaluated in landraces and improved clones. Euphytica 143:125–133

    Article  Google Scholar 

  • Chee W, Elias EM, Anderson JA, Kianian SF (2001) Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoies in an adapted Durum wheat background. Crop Sci 41:295–301

    Article  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Dellarporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    Article  Google Scholar 

  • DeVries J, Toenniessen G (2001) Securing the harvest: biotechnology, breeding and seed systems for African crops. Chapter 13: Cassava. CABI Publishing Oxon, UK, pp 147–156

    Google Scholar 

  • Diasolua Ngudi D, Kuo YH, Lambien F (2002) Food safety and amino acid balance in processed cassava roots “cossettes”. J Agric Food Chem 50:3042–3049

    Article  PubMed  Google Scholar 

  • Diasolua Ngudi D, Kuo YH, Lambien F (2003) Cassava cyanogens and free amino acids in raw and cooked leaves. Food Chem Toxicol 41:1193–1197

    Article  PubMed  Google Scholar 

  • Dixon AGO, Asiedu R, Bokanga M (1994) Breeding of cassava for low cyanogenic potential: problems, progress and perspective. Acta Horticulture 375:153–161

    CAS  Google Scholar 

  • Fregene M, Angel F, Gomez R, Rodriguez F, Chavarriago P, Roca W, Tohme J, Bonierbale M (1997) A molecular genetic map of cassava (Manihot esculenta Crantz). Theor Appl Genet 95:431–441

    Article  CAS  Google Scholar 

  • Fregene MA, Blair MW, Beebe SE, Ceballos H (2007) Marker-assisted selection in common beans and cassava. In: Marker-assisted selection (MAS) in crops, livestock, forestry and fish: current status and the way forward. FAO Publishing, 471p.

  • Frisch M, Bohn M, Melchinger AE (1999) Comparison of selection strategies for marker-assisted backcrossing of a gene. Crop Sci 39:1295–1301

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: A survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Hock-Hin Y, Van-Den T (1996) Protein contents, amino acid compositions and nitrogen-to protein conversion factors for cassava roots. J Sci Food Agric 70:51–54

    Article  Google Scholar 

  • Holding DR, Hunter BG, Chung T, Gibbon BC, Ford CF, Bharti AK, Messing J, Hamaker BR, Larkins BA (2008) Genetic analysis of opaque 2 modifier loci in quality protein maize. Theor Appl Genet 117:157–170

    Article  PubMed  CAS  Google Scholar 

  • Jorge V, Fregene M, Velez CM, Durque MC, Tohme J, Verdier V (2001) QTL analysis of field resistance to Xanthomonas axonopodis pv. manihotis in cassava. Theor Appl Genet 102:564–571

    Article  Google Scholar 

  • Kawano K (1980) Cassava. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. American Society of Agronomy and Crop Science Society of America, Madison, Wisconsin, USA, pp 225–233

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Krom M (1980) Spectrophotometric determination of ammonia; a study of modified Bethelot reaction using salicylate and cichloroisicyanurate. The Analyist 105:305–316

    Article  CAS  Google Scholar 

  • Lorieux M (2007) MapDisto, A free user-friendly program for computing genetic maps. Computer demonstration (P958) given at the plant and animal genome XV conference, January 13–17, San Diego, CA URL: http://mapdisto.free.fr/.

  • Mba REC, Stephenson P, Edwards K, Mezer S, Nkumbira J, Gulberg U, Apel K, Gale M, Tohme J, Fregene MA (2001) Simple sequence repeat (SSR) marker survey of the cassava (Manihot esculenta Crantz) genome: toward a SSR-based molecular genetic map of cassava. Theor Appl Genet 102:21–31

    Article  CAS  Google Scholar 

  • Nassar NMA (2000) Wild cassava, Manihot spp.: Biology and potentialities for genetic improvement. Genet Mol Biol 23(1):201–212

    Article  Google Scholar 

  • Novozamsky I, Houba VJG, van Eck R, van Vark W (1983) A novel digestion technique for multi-element analysis. Comm Soil Sci Plant Anal 14:239–249

    Article  CAS  Google Scholar 

  • Okogbenin E, Fregene M (2002) Genetic analysis and QTL mapping of early root bulking in an F1 population of non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 106:58–66

    PubMed  CAS  Google Scholar 

  • Okogbenin E, Fregene M (2003) Genetic mapping of QTLs affecting productivity and plant architecture in a full-sib cross from non-inbred parents in cassava (Manihot esculenta Crantz). Theor Appl Genet 107:1452–1462

    Article  PubMed  CAS  Google Scholar 

  • Okogbenin E, Marin J, Fregene M (2008) QTL analysis for early yield in a pseudo F2 population of cassava. Afr J Biotechnol 7:131–138

    CAS  Google Scholar 

  • Olsen KM, Schaal BA (1999) Evidence on the origin of cassava: Phylogeography of Manihot esculenta. Proc Natl Acad Sci, USA 96:5586–5591

    Article  PubMed  CAS  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci 45:2015–2022

    Article  CAS  Google Scholar 

  • Rector BG, All JN, Parrott WA, Boerma HR (1998) Identification of molecular markers associated with quantitative trait loci for soybean resistance to corn earworm. Theor Appl Genet 96:786–790

    Article  CAS  Google Scholar 

  • Roa AC, Maya MM, Durque MC, Tohme J, Allem AC, Bonierbale MW (1997) AFLP analysis of relationships among cassava and other Manihot species. Theor Appl Genet 95:741–750

    Article  CAS  Google Scholar 

  • SAS Institute Inc (2003) SAS/STAT software: changes and enhancement for release 9.1. SAS Institute Inc, Cary, NC, p 158

    Google Scholar 

  • Searle PL (1984) The Berthelot or indophenol reaction and its use in the analysis chemistry of nitrogen. The Analyist 109:549–565

    Article  CAS  Google Scholar 

  • Skalar (1995) The SANplus segmented flow analyzer. Soil and Plant Analysis. Skalar Analytical B.V, De Breda, The Netherlands, 70–72p

    Google Scholar 

  • Śliwka J, Wasilewicz-Flis I, Jakuczun H, Gebhardt C (2008) Tagging quantitative trait loci for dormancy, tuber shape, regularity of tuber shape, eye depth and fresh colour in diploid potato originated from six Solanum species. 127:49–55

  • Walinga I, van Vark W, Houba VJG, van der Lee JJ (1989) Plant analysis procedures, Part 7. Department of Soil Science and Plant Nutrition, Wageningen Agricultural University, Syllabus 1989, 197–200p

  • Wang S, Basten CJ, Zeng Z-B (2010) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. (http://stat.ncsu.edu/qtlcart/WQTLCart.htm).

  • Wassom JJ, Wong JC, Martinez E, King JJ, DeBaene J, Hotchkiss JR, Mikkilineni V, Bohn MO, Rocheford TR (2008) QTL associated with Maize kernel oil, protein, and starch concentrations; Kernel mass; and grain yield in Illinois high oil x B73 backcross-derived lines. Crop Sci 48:243–252

    Article  Google Scholar 

  • Williams CG (1998) QTL mapping in outbreed pedigrees. In: Patterson AH (ed) Molecular dissection of complex traits. CRC Press LLC, Florida, USA, pp 81–94p

    Google Scholar 

  • Wydra K, Zinsou V, Jorge V, Verdier V (2004) Identification of pathotypes of Xanthomonas axonopodis pv. Manihotis in Africa and detection of quantitative trait loci and markers for resistance to Bacterial Blight if cassava. Phytopathology 94:1084–1093

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research work was supported by a pre-doctoral fellowship granted to CIAT from Rockefeller Foundation. Kirkhouse trust fund and Generation Challenge Programme supported my training in QTL mapping courses at NC State, summer courses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Akinbo.

Additional information

Communicated by: Paul Moore

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akinbo, O., Labuschagne, M.T., Marín, J. et al. QTL Analysis for Root Protein in a Backcross Family of Cassava Derived from Manihot esculenta ssp flabellifolia . Tropical Plant Biol. 5, 161–172 (2012). https://doi.org/10.1007/s12042-012-9095-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-012-9095-8

Keywords

Navigation