Skip to main content
Log in

Identification of QTLs in oil palm (Elaeis guineensis Jacq.) using SSR markers through association mapping

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Oil palm (Elaeis guineensis Jacq.) is a perennial vegetable and a high oil-yielding crop (4–6 t/ha). There is a large scope for increasing the oil yield by selecting elite planting material for breeding programme in germplasm evaluation, characterization and utilization. In the present study, a diverse range of 150 oil palm genotypes were characterized using 12 quantitative variables with 54 genomic microsatellite markers. A wide variation was observed in the morphological traits among indigenous populations. Highly significant and positive correlations were observed between vegetative dry matter (VDM) and total dry matter (TDM) (0.862), and height and height increment (0.838). The first two principal component analyses explained 67.7% of total variation among morphological traits. The genotypes IC0610001-59 (Pune-2) and IC0610001-60 (Pune-2) were found highly promising based on less height increment, more TDM with high yield. For the mapping study, general linear model (GLM) approach, quantitative-trait loci (QTL) for annual height increment, number of bunches, bunch yield and bunch index were linked to simple-sequence repeat (SSR) loci mEgCIR3649 with phenotypic variance of 15.08, 10.43, 11.74, 15.39. TDM and VDM were linked to mEgCIR0192 (27.34 and 24.19%), mEgCIR3684 (16.84 and 18.30%), SPSC00163 (18.8 and 15.39%) and mEgCIR0555 (16.47 and 18.81%), with at a significant threshold (P) level of ≤0.001 and by mixed linear model (MLM) approach. TDM was linked to mEgCIR0555 with phenotypic variance of 20.72%, bunch yield and bunch index were linked to mEgCIR2813 at phenotypic variance of 17.11% and 12.88%, respectively, at a significant threshold (P) level of ≤0.01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Anonymous 2019a Oil palm hybrid seed production, pp. 5. ICAR-IIOPR, Pedavegi.

  • Anonymous 2019b Annual report 2018-19, ICAR-Indian Institute of Oil palm Research, Pedavegi- 534 450, Andhra Pradesh, India, pp.1–3 (http://dopr.gov.in/Reports/IIOPR%20AR%202018-09%20Final_1.pdf).

  • Balakrishna P., Pinnamaneni R., Pavani K. V. and Mathur R. K. 2017 Genetic diversity in oil palm genotypes by multivariate analysis. Int. J. Curr. Microbiol. Appl. Sci. 6, 1180–1189.

    Article  Google Scholar 

  • Barcelos E., Amblard P., Berthaud J. and Seguim M. 2000 The genetic diversity of the American oil palm (Elaeis oleifera Kunth.) Corte’s revealed by nuclear RFLP markers. In International symposium on oil palm genetic resources and utilization, pp. 173–192. The Malaysian Palm oil Board, Kuala Lumpur.

  • Bradbury P., Zhang Z., Kroon D., Casstevens T. and Ramdoss Y. 2007 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635.

    Article  CAS  Google Scholar 

  • Breure C. J. 1994 Development of leaves in oil palm (Elaeis guineensis Jacq.) and the determination of leaf opening rates. Exp. Agric. 30, 467–472.

    Article  Google Scholar 

  • Byrne M., Murrell J. C., Owen J. V., Kriedemann P., Williams E. R. and Moran G. F. 1997 Identification and mode of action of quantitative trait loci affecting seedling height and leaf area in Eucalyptus nitens. Appl. Genet. 94, 674–681.

    Article  Google Scholar 

  • Claude B., Wickneswari R., Siju S., Rajanaidu N., Kushairi A. and Billotte N. 2015 Genetic diversity of the world’s largest oil palm (Elaeis guineensis Jacq.) field genebank accessions using microsatellite markers. Genet. Resour. Crop Evol. 62, 349–360.

    Article  Google Scholar 

  • Corley R. H. V. and Gray B. S. 1976 Growth and morphology. In Oil palm research (ed. R. H. V. Corley, J. J. Hardon and B. J. Wood), pp. 7–21. Wiley-Blackwell, Hoboken.

    Google Scholar 

  • Corley R. H. V. and Tinker P. B. 2003 Dry matter production (4. 1. 2). In The oil palm, pp. 91. Wiley-Blackwell, Hoboken.

  • Corley R. H. V., Hardon J. J. and Tan G. V. 1971 Analysis of growth of the oil palm (Elaeis guineensis Jacq.) and estimation of growth parameters and application in breeding. Euphytica 20, 307–315.

    Article  Google Scholar 

  • Fadila A. M., Norziha A., Mohd Din A. and Rajanaidu N. 2011 Evaluation of bunch index in the mpob germplasm collections. Paper presented at the International Seminar on Breeding for Sustainability in Oil Palm, held on 18 November 2011 in Kuala Lumpur, Malaysia, pp. 59–70. Jointly organised by the International Society for Oil Palm Breeders (ISOPB) and Malaysian Palm Oil Board (MPOB).

  • Gerritsma W. and Soebagyo F. X. 1999 An analysis of the growth of leaf area of oil palms in Indonesia. Exp. Agric. 35, 293–308.

    Article  Google Scholar 

  • Hamza A. M., Collins A., Ado S. G., Ikuenobe C. E., Ataga C. D. and Odewale J. O. 2014 Proximate compositions evaluation and variability among cultivars of date palm (Phoenix dactylifera L.) in Nigeria. Int. J. Plant Soil Sci. 3, 248–259.

    Article  Google Scholar 

  • Hayati A., Wickneswari R., Maizura I. and Rajanaidu N. 2004 Genetic diversity of oil palm (Elaeis guineensis Jacq.) germplasm collections from Africa: implications for improvement and conservation of genetic resources. Theor. Appl. Genet. 108, 1274–1284.

    Article  CAS  Google Scholar 

  • Heckenberger M., Bohn M., Ziegle J. S., Joe L. K., Hauser J. D., Hutton M. et al. 2002 Variation of DNA fingerprints among accessions within maize inbred lines and implications for identification of essentially derived varieties. Mol. Breed. 10, 181–191.

    Article  CAS  Google Scholar 

  • Iannucci A., Codianni P. and Cattivelli L. 2011 Evaluation of genotype diversity in oat germplasm and definition of ideotypes adapted to the mediterranean environment. Int. J. Agron. 8, 1–8.

    Article  Google Scholar 

  • Jeennor S. and Volkaert H. 2014 Mapping of quantitative trait loci (QTLs) for oil yield using SSRs and gene-based markers in African oil palm (Elaeis guineensis Jacq.). Tree Genet. Genom. 10, 1–14.

    Article  Google Scholar 

  • Khan M. A., VonWitze-Ehbrecht S., Maass S. L. and Becker H. C. 2009 Relationships among different groups, agromorphology, fatty acid compositiom and RAPD marker diversity in safflower (Carthanus tinctorius). Genet. Resour. Crop Evol. 56, 19–30.

    Article  CAS  Google Scholar 

  • Kumar R. R. and Singh S. P. 2006 Multivariate analysis and clustering of Cuphea procubens inbred lines. Genetika 38, 23–30.

    Article  Google Scholar 

  • Lebrun P., Baudouin L., Bourdeix R., Konan J. L. and Barker J. H. A. 2001 Construction of a linkage map of the Rennell Island Tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44, 962–970.

    Article  CAS  Google Scholar 

  • Li-Hammeda M. A., Kushairib A., Rajanaidub N., Mohd Sukria H., Che Wan Zanariah C. W. N. and Jalania B. S. 2015 Multivariate analysis of vegetative and physiological traits in oil palm (Elaies guineensis Jacq) Germplasm. Expert Opin. Environ. Biol. 4, 219–226.

    Google Scholar 

  • Liu K. and Muse M. 2005 Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21, 2128–2129.

    Article  CAS  Google Scholar 

  • Maizura I., Rajanaidu N., Zakri A. and Cheah S. 2006 Assessment of genetic diversity in oil palm (Elaeis guineensis Jacq.) using restriction fragment length polymorphism (RFLP). Genet. Resour. Crop Evol. 53, 187–195.

    Article  CAS  Google Scholar 

  • Mandal G. and Mathur R. K. 2015 Performance of segregating Tenera x Tenera population in oil palm. Int. J. Bio-res. Env. Agric. Sci. 1, 108–113.

    Google Scholar 

  • Mandal P. K. and Babu K. M. 2008 Bunch analysis of oil palm. In Technical bulletin, No. 8. (ed. M. Kochu Babu). National Research Centre on Oil Palm, Pedavegi.

  • Mott R., Talbot C. J., Turri M. G., Collins A. C. and Flint J. A. 2000 A method for fine mapping quantitative trait loci in outbred animal stocks. Proc. Natl. Acad. Sci. USA 97, 12649–12654.

    Article  Google Scholar 

  • Murray M. G. and Thompson W. F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 8, 4321–4326.

    Article  CAS  Google Scholar 

  • Murugesan P., Mary R. K. L., Ramajayam D., Sunil K. K., Mathur R. K., Ravichandran G. et al. 2015 Genetic diversity of vegetative and bunch traits of African oil palm (Elaeis guineensis) germplasm in India. Indian J. Agric. Sci. 85, 32–35.

    Google Scholar 

  • Noh A., Rafii M. Y., Saleh G., Kushairi A. and Latif M. A. 2012 Genetic performance and general combining ability of oil palm deli dura × AVROS pisifera tested on inland soils. Sci World J. article ID792601.

  • Noh A., Rafii M. Y., Mohd Din A., Kushairi A., Norziha A., Rajanaidu N. et al. 2014 Variability and performance evaluation of introgressed Nigerian dura x deli dura oil palm progenies. Genet. Mol. Res. 13, 2426–2437.

    Article  CAS  Google Scholar 

  • Oboh B. O. and Fakorede M. A. B. 1990 Interrrelations among vegetative, yield and bunch quality traits in short term oil palm progenies. Euphytica 46, 7–14.

    Article  Google Scholar 

  • Ong P. W., Maizura I., Abdullah N. A. P., Rafii M Y., Ooi L. C. L., Low E. T. L. et al. 2015 Development of SNP markers and their application for genetic diversity analysis in the oil palm (Elaeis guineensis). Genet. Mol. Res. 14, 12205–12216.

    Article  CAS  Google Scholar 

  • Ooi S. C., Hardon J. J. and Phang S. 1973 Variability in the Deli dura breeding population of the oil palm (Elaeis guineensis Jacq.) components of bunch yield. Malay. Agric. J. 49, 112–121.

    Google Scholar 

  • Osorio-Guarín J. A, Garzón-Martínez G. A., Delgadillo-Duran P., Bastidas S., Moreno L. P., Enciso-Rodríguez F. E. et al. 2019 Genome-wide association study (GWAS) for morphological and yield-related traits in an oil palm hybrid (Elaeis oleifera x Elaeis guineensis) population. BMC Plant Biol. 19, 533.

    Article  Google Scholar 

  • Pan Q., Wendel J. and Fluhr R. 2000 Divergent evolution of plant NBS-LRR resistance gene homologues in dicot and cereal genomes. J. Mol. Evol. 50, 203–213.

    Article  CAS  Google Scholar 

  • Pootakham W., Jomchai N., Ruang-areerate P. Shearman J. R., Sonthirod C., Sangsrakru D. et al. 2015 Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics 105, 288–295.

    Article  CAS  Google Scholar 

  • Li-Hammeda M. A., Kushairib A., Rajanaidub N., Mohd Sukria H., Che Wan Zanariah C. W. N. and Jalania B. S. 2016 Genetic variability for yield components and fatty acid traits in oil palm (Elaeis guineensis Jacq.) germplasm using multivariate tools. Int. J. Agric. For. Plantation 2, 219–226.

    Google Scholar 

  • Rance K. A., Mayes S., Price Z., Jack P. L. and Corley R. H. V. 2001 Quantitative trait loci for yield components in oil palm (Elaeis guineensis Jacq.). Theor. Appl. Genet. 103, 1302–1310.

    Article  CAS  Google Scholar 

  • Rao V. R. and Hodgkin T. 2002 Genetic diversity, conservation and utilization of plant genetic resources. Plant Cell, Tiss. Org. 68, 1–19.

    Article  Google Scholar 

  • Ritter E., Rodriguez M. J. B., Herran A., Estioko L., Becker D. and Rohde W. 2000 Analysis of quantitative trait loci (QTL) based on linkage maps in coconut (Cocos nucifera L.). In Plant genetic engineering towards the third millennium (ed. A. Arencibia), pp. 42–48. Elsevier, Amsterdam.

  • Sharon E. M., Kresovich S., Jester C. A., Hernandez C. J. and Szewc-McFadden A. K. 1997 Application of multiplex PCR and fluorescence-based, semi-automated allele sizing technology for genotyping, plant genetic resources. Crop Sci. 37, 617–624.

    Article  Google Scholar 

  • Singh R., Zaki N. M., Ting N. C., Rosli R., Tan S. G., Low E. T. L. et al. 2008 Exploiting an oil palm EST database for the development of gene-derived SSR markers and their expoitation for assessment of genetic diversity. Biologia 63, 227–235.

    Article  CAS  Google Scholar 

  • Smith J. S. C., Chin E. C. L., Shu H., Smith O. S., Well S. J., Senior M. L. et al. 1997 An evaluation of the utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor. Appl. Genet. 95, 163–173.

    Article  CAS  Google Scholar 

  • Ting N. C., Noorhariza M. Z., Rozana R., Low E. T. L., Ithnin M., Cheah S. C. et al. 2010a SSR mining in oil palm EST database: application in oil palm germplasm diversity studies. J. Genet. 89, 135–145.

    Article  Google Scholar 

  • Ting N. C., Zaki N. M., Rozana R. and Singh R. 2010b SSR mining in oil palm EST database: Application in oil palm germplasm diversity studies. J. Genet. 89, 135–145.

    Article  Google Scholar 

  • Vander-Vossen H. A. M. 1974 Towards more efficient selection for oil yield in the oil palm (Elaeis guineensis Jacquin). M. Sc. Thesis, Wageningen University, Wageningen.

    Google Scholar 

Download references

Acknowledgment

First author is thankful to the Director Dr R. K. Mathur and Scientists P. Murugesan, K. Sunil Kumar, K. Suresh, Goutham Mandal, A. G. K. Reddy, D. Ramajayam, G. Ravichandran, S. Rahana, B. Kalyana Babu, P. Naveen Kumar, P. Anitha and Somasundaram and other staff including RA, SRFs and technical persons etc. who worked for collection, conservation, cataloguing of oil palm germplasm project at ICAR-Indian Institute of Oil Palm Research, Pedavegi and University of Horticultural Sciences, Bagalkot, for providing the facilities to conduct my research in the Institute as a part of my Ph.D. work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. P. Bhagya.

Additional information

Corresponding editor: Manoj Prasad

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhagya, H.P., Kalyana Babu, B., Gangadharappa, P.M. et al. Identification of QTLs in oil palm (Elaeis guineensis Jacq.) using SSR markers through association mapping. J Genet 99, 19 (2020). https://doi.org/10.1007/s12041-020-1180-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-020-1180-4

Keywords

Navigation