Skip to main content
Log in

X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Studies have shown that many complex diseases are sex-determined. When conducting genetic association studies on X-chromosome, there are two important epigenetic factors which should be considered simultaneously: X-chromosome inactivation and genomic imprinting. Currently, there have been several association tests accounting for the information on X-chromosome inactivation. However, these tests do not take the imprinting effects into account. In this paper, we propose a novel association test simultaneously incorporating X-chromosome inactivation and imprinting effects based on case–parent trios and control–parent trios for female offspring and case–control data for male offspring, denoted by \( MLR_{XCII} \). Extensive simulation studies are carried out to investigate the type I error rate and the test power of the proposed \( MLR_{XCII} \). Simulation results demonstrate that the proposed test controls the type I error rate well and is more powerful than the existing method when imprinting effects exist. The proposed \( MLR_{XCII} \) test is valid and powerful in genetic association studies on X-chromosome for qualitative traits and thus is recommended in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Amos-Landgraf J. M., Cottle A., Plenge R. M., Friez M., Schwartz C. E., Longshore J. et al. 2006 X chromosome-inactivation patterns of 1005 phenotypically unaffected females. Am. J. Hum. Genet. 79, 493–499.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Avner P. and Heard E. 2001 X-chromosome inactivation: counting, choice and initiation. Nat. Rev. Genet. 2, 59–67.

    CAS  PubMed  Google Scholar 

  • Bartolomei M. S. 2009 Genomic imprinting: employing and avoiding epigenetic processes. Gene Dev. 23, 2124–2133.

    CAS  PubMed  Google Scholar 

  • Breslau N., Davis G. C., Andreski P., Peterson E. L. and Schultz L. R. 1997 Sex differences in posttraumatic stress disorder. Arch. Gen. Psychiatry 54, 1044–1048.

    CAS  PubMed  Google Scholar 

  • Carrel L. and Willard H. F. 2005 X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature 434, 400–404.

    CAS  PubMed  Google Scholar 

  • Clayton D. 2008 Testing for association on the X chromosome. Biostatistics 9, 593–600.

    PubMed  PubMed Central  Google Scholar 

  • Cohn B. A., Wingard D. L., Cirillo P. M., Cohen R. D., Reynolds P. and Kaplan G. A. 1996 Re: Differences in lung cancer risk between men and women: examination of the evidence. J. Natl. Cancer Inst. 88, 1867.

    CAS  PubMed  Google Scholar 

  • Constância M., Pickard B., Kelsey G. and Reik W. 1998 Imprinting mechanisms. Genome Res. 8, 881–900.

    PubMed  Google Scholar 

  • Deng H. W. and Chen W. M. 2001 The power of the transmission disequilibrium test (TDT) with both case-parent and control-parent trios. Genet. Res. 78, 289–302.

    CAS  PubMed  Google Scholar 

  • Deng X., Berletch J. B., Nguyen D. K. and Disteche C. M. 2014 X chromosome regulation: diverse patterns in development, tissues and disease. Nat. Rev. Genet. 15, 367–378.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Smith A. C. 2011 Genomic imprinting: the emergence of an epigenetic paradigm. Nat. Rev. Genet. 12, 565–575.

    CAS  PubMed  Google Scholar 

  • Gao F., Chang D., Biddanda A., Ma L., Guo Y., Zhou Z. et al. 2015 XWAS: a software toolset for genetic data analysis and association studies of the X chromosome. J. Hered. 106, 666–671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hankin B. L. and Abramson L. Y. 2001 Development of gender differences in depression: an elaborated cognitive vulnerability–transactional stress theory. Psychol. Bull. 127, 773–796.

    CAS  PubMed  Google Scholar 

  • Hickey P. F. and Bahlo M. 2011 X chromosome association testing in genome wide association studies. Genet. Epidemiol. 35, 664–670.

    PubMed  Google Scholar 

  • Hindorff L. A., Sethupathy P., Junkins H. A., Ramos E. M., Mehta J. P., Collins F. S. et al. 2009 Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106, 9362–9367.

    CAS  PubMed  Google Scholar 

  • Kay G. F. 1998 Xist and X chromosome inactivation. Mol. Cell. Endocrinol. 140, 71–76.

    CAS  PubMed  Google Scholar 

  • Kukurba K. R., Parsana P., Balliu B., Smith K. S., Zappala Z., Knowles D. A. et al. 2016 Impact of the X chromosome and sex on regulatory variation. Genome Res. 26, 768–777.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee J. T. 2000 Disruption of imprinted X inactivation by parent-of-origin effects at Tsix. Cell 103, 17–27.

    CAS  PubMed  Google Scholar 

  • Lee J. T. and Bartolomei M. S. 2013 X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152, 1308–1323.

    CAS  PubMed  Google Scholar 

  • Lerner D. J. and Kannel W. B. 1986 Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. Am. Heart J. 111, 383–390.

    CAS  PubMed  Google Scholar 

  • Li M., Li J., He Z., Lu Q., Witte J. S., Macleod S. L. et al. 2016 Testing allele transmission of an SNP set using a family based generalized genetic random field method. Genet. Epidemiol. 40, 341–351.

    PubMed  PubMed Central  Google Scholar 

  • Loesch D. Z., Bui Q. M., Kelso W., Huggins R. M., Slater H., Warne G. et al. 2005 Effect of Turner’s syndrome and X-linked imprinting on cognitive status: analysis based on pedigree data. Brain Dev. 27, 494–503.

    PubMed  Google Scholar 

  • Lyon M. F. 1962 Sex chromatin and gene action in the mammalian X-chromosome. Am. J. Hum. Genet. 14, 135–148.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyon M. F. 1972 X-chromosome inactivation and developmental patterns in mammals. Biol. Rev. 47, 1–35.

    CAS  PubMed  Google Scholar 

  • Mendelsohn M. E. and Karas R. H. 2005 Molecular and cellular basis of cardiovascular gender differences. Science 308, 1583–1587.

    CAS  PubMed  Google Scholar 

  • Migeon B. R., Chowdhury A. K., Dunston J. A. and Mcintosh I. 2001 Identification of TSIX, encoding an RNA antisense to human XIST, reveals differences from its murine counterpart: implications for X inactivation. Am. J. Hum. Genet. 69, 951–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minks J., Robinson W. P. and Brown C. J. 2008 A skewed view of X chromosome inactivation. J. Clin. Invest. 118, 20–23.

    CAS  PubMed  Google Scholar 

  • Naugler W. E., Sakurai T., Kim S., Maeda S., Kim K., Elsharkawy A. M. et al. 2007 Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317, 121–124.

    CAS  PubMed  Google Scholar 

  • Patten M. M., Ross L., Curley J. P., Queller D. C., Bonduriansky R. and Wolf J. B. 2014 The evolution of genomic imprinting: theories, predictions and empirical tests. Heredity 113, 119–128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson T. A. and Manolio T. A. 2008 How to interpret a genome-wide association study. J. Am. Med. Assoc. 299, 1335–1344.

    CAS  Google Scholar 

  • Penny G. D., Kay G. F., Sheardown S. A., Rastan S. and Brockdorff N. 1996 Requirement for Xist in X chromosome inactivation. Nature 379, 131–137.

    CAS  PubMed  Google Scholar 

  • Reik W. and Walter J. 2001 Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2, 21–32.

    CAS  PubMed  Google Scholar 

  • Tycko B. and Morison I. M. 2002 Physiological functions of imprinted genes. J. Cell. Physiol. 192, 245–258.

    CAS  PubMed  Google Scholar 

  • Voskuhl R. 2011 Sex differences in autoimmune diseases. Biol. Sex Differ. 2, 1.

    PubMed  PubMed Central  Google Scholar 

  • Wang J., Yu R. and Shete S. 2014 X-chromosome genetic association test accounting for X inactivation, skewed X-inactivation, and escape from X-inactivation. Genet. Epidemiol. 38, 483–493.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P., Xu S. Q., Wang B. Q., Fung W. K. and Zhou J. Y. 2019 A robust and powerful test for case-control genetic association study on X chromosome. Stat. Methods Med. Res. 28, 3260–3272.

    PubMed  Google Scholar 

  • Wang P., Zhang Y., Wang B. Q., Li J. L., Wang Y. X., Pan D. et al. 2019 A statistical measure for the skewness of X chromosome inactivation based on case-control design. BMC Bioinformatics 20, 11.

    PubMed  PubMed Central  Google Scholar 

  • Wise A. L., Gyi L and Manolio T. A. 2013 eXclusion: toward integrating the X chromosome in genome-wide association analyses. Am. J. Hum. Genet. 92, 643–647.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong C. C. Y., Caspi A., Williams B., Houts R., Craig I. W. and Mill J. 2011 A longitudinal twin study of skewed X chromosome-inactivation. PLoS One 6, e17873.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu S. Q., Zhang Y., Wang P., Liu W., Wu X. B. and Zhou J. Y. 2018 A statistical measure for the skewness of X chromosome inactivation based on family trios. BMC Genet. 19, 109.

    PubMed  PubMed Central  Google Scholar 

  • Yang J. and Lin S. 2012 Likelihood approaches for detecting imprinting and maternal effects in family based association studies. Biometrics 68, 477–485.

    PubMed  Google Scholar 

  • Zheng G., Joo J., Zhang C. and Geller N. L. 2007 Testing association for markers on the X chromosome. Genet. Epidemiol. 31, 834–843.

    PubMed  Google Scholar 

  • Zhou J. Y., You X. P., Yang R. and Fung W. K. 2018 Detection of imprinting effects for qualitative traits on X chromosome based on nuclear families. Stat. Methods Med. Res. 27, 2329–2343.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the two reviewers for helpful comments that greatly improve the presentation of the paper. This work was supported by the National Natural Science Foundation of China (grant 81773544), the National and Guangzhou University Students’ Innovation and Enterprise Training Project of China (grant 201712121105) and the Hong Kong RGC GRF grant (17302919).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wing Kam Fung or Ji-Yuan Zhou.

Additional information

Corresponding editor: H. A. Ranganath

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Wang, BQ., Liu-Fu, G. et al. X-chromosome genetic association test incorporating X-chromosome inactivation and imprinting effects. J Genet 98, 99 (2019). https://doi.org/10.1007/s12041-019-1146-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-019-1146-6

Keywords

Navigation