Skip to main content
Log in

Nucleotide diversity and phylogenetic relationships among Gladiolus cultivars and related taxa of family Iridaceae

  • RESEARCH ARTICLE
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

The plastid genome regions of two intergenic spacers, psbA–trnH and trnL–trnF, were sequenced to study the nucleotide diversity and phylogenetic relationships among Gladiolus cultivars. Nucleotide diversity of psbA–trnH region was higher than trnL–trnF region of chloroplast. We employed Bayesian, maximum parsimony (MP) and neighbour-joining (NJ) approaches for phylogenetic analysis of Gladiolus and related taxa using combined datasets from chloroplast genome. The psbA–trnH and trnL–trnF intergenic spacers of Gladiolus and related taxa-like Babiana, Chasmanthe, Crocus, Iris, Moraea, Sisyrinchium, Sparaxis and two out group species (Hymenocallis littoralis and Asphodeline lutea) were used in the present investigation. Results showed that subfamily Iridoideae have sister lineage with subfamily Ixioideae and Crocoideae. H. littoralis and A. lutea were separately attached at the base of tree as the diverging Iridaceae relative’s lineage. Present study revealed that psbA–trnH region are useful in addressing questions of phylogenetic relationships among the Gladiolus cultivars, as these intergenic spacers are more variable and have more phylogenetically informative sites than the trnL–trnF spacer, and therefore, are suitable for phylogenetic comparison on a lower taxonomic level. Gladiolus cultivars are extensively used as an ornamental crop and showed high potential in floriculture trade. Gladiolus cultivation still needs to generate new cultivars with stable phenotypes. Moreover, one of the most popular methods for generating new cultivars is hybridization. Hence, information on phylogenetic relationships among cultivars could be useful for hybridization programmes for further improvement of the crop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Anderson W. and Park R. 1989 Growing Gladioli, pp. 166. Timber Press, Portland, USA.

    Google Scholar 

  • Bamford R. 1935 The chromosome number in Gladiolus. J. Agri. Res. 51, 945–950.

    Google Scholar 

  • Buch P. O. 1978 The species. In The world of the Gladiolus edgewood, pp. 2–7. Edgewood Press, Edgewood, USA.

  • Chandler G. T., Bayer R. J. and Crisp M. D. 2001 A molecular phylogeny of the endemic Australiangenus Gastrolobium (Fabaceae: Mirbelieae) and allied genera using chloroplast and nuclear markers. Am. J. Bot. 88, 1675–1687.

    Article  CAS  PubMed  Google Scholar 

  • Doyle J. J. and Doyle J. L. 1990 Isolation of plant DNA from fresh tissue. Focus 12, 13–15.

    Google Scholar 

  • Drouin G., Daoud H. and Xia J. 2008 Relative rates of synonymous substitutions in the mito-chondrial chloroplast and nuclear genomes of seed plants. Mol. Phylogenet. Evol. 49, 827–831.

    Article  CAS  PubMed  Google Scholar 

  • Edgar R. C. 2004 MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldblatt P. 2001 Phylogeny and classification of the Iridaceae and the relationships of Iris. Irises and Iridaceae: biodiversity and systematics. Ann. Bot. 1, 13–28.

    Google Scholar 

  • Goldblatt P. and Manning J. C. 1998 Gladiolus in Southern Africa. Fernwood Press, Vlaeberg.

    Google Scholar 

  • Goldblatt P., Manning J. C. and Bernhardt P. 2001 Radiation of pollination systems in Gladiolus (Iridaceae: Crocoideae) in southern Africa. Ann. Missouri Bot. Gard. 88, 713–734.

    Article  Google Scholar 

  • Greiner S., Sobanski J. and Bock R. 2015 Why are most organelle genomes transmitted maternally? BioEssays 37, 80–94.

    Article  CAS  PubMed  Google Scholar 

  • Hall T. A. 1999 BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym. Ser. 41, 95–98.

    CAS  Google Scholar 

  • Huelsenbeck J. P. and Ronquist F. 2001 MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.

    Article  CAS  PubMed  Google Scholar 

  • Jingang W., Hongkun J., Shufang G. and Daidi C. 2006 RAPD Analysis of 12 general species of Gladiolus hybridus Hort. J. Northeast Agric. Univ. 13, 112–115.

    Google Scholar 

  • Jingang W., Ying G., Daidi C., Shenkui L. and Chuanpin Y. 2008 ISSR analysis of 26 general species of Gladiolus hybridus Hort. J. Northeast Agric. Univ. 15, 6–10.

    Google Scholar 

  • Kim S. C., Crawford D. J., Jansen R. K. and Santos-Guerra A. 1999 The use of a non-coding region of chloroplast DNA in phylogenetic studies of the subtribe Sonchinae (Asteraceae: Lactuaceae). Plant Syst. Evol. 215, 85–99.

    Article  Google Scholar 

  • Librado P. and Rozas J. 2009 DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    Article  CAS  PubMed  Google Scholar 

  • Nei M. and Li W. H. 1979 Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269–5273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nylander J. A. A., Ronquist F., Huelsenbeck J. P. and Nieves-Aldrey J. L. 2004 Bayesian phylogenetic analysis of combined data. Syst. Biol. 53, 47–67.

    Article  PubMed  Google Scholar 

  • Nylander J. A. A., Wilgenbusch J. C., Warren D. L. and Swofford D. L. 2007 AWTY (Are we there yet?): A system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583.

    Article  PubMed  Google Scholar 

  • Ohi T., Kajita T. and Murata J. 2003b Distinct geographic structure as evidenced by chloroplast DNA haplotypes and ploidy level in Japanese AuCuba (Aucubaceae). Am. J. Bot. 90, 1645–1652.

    Article  PubMed  Google Scholar 

  • Ohri D. and Khoshoo T. N. 1983 Cytogenetics of garden Gladiolus. IV. Origin and evolution of ornamental taxa. Proc. Nat. Acad. Sci. USA 49, 279–294.

    Google Scholar 

  • Ohri D. and Koshoo T. N. 1985b Cytogenetical evolution of garden Gladiolus. Nucleus 28, 216–221.

    Google Scholar 

  • Posada D. 2008 jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256.

    Article  CAS  PubMed  Google Scholar 

  • Pragya P., Bhat K. V., Misra R. L. and Ranjan J. K. 2010 Analysis of diversity and relationships among Gladiolus cultivars using morphological and RAPD markers. Ind. J. Agric. Sci. 80, 766–772.

    Google Scholar 

  • Ranjan P., Bhat K. V., Misra R. L., Singh S. K. and Ranjan J. K. 2010 Genetic relationships of gladiolus cultivars inferred from fluorescence based AFLP markers. Sci. Hort. 123, 562–567.

    Article  CAS  Google Scholar 

  • Raycheva T., Stoyanov K. and Denev I. 2011 Genetic diversity and molecular taxonomy study of three genera from Iridaceae family in the Bulgarian flora based on ISSR markers. Biotechnol. Biotechnol. Equip. 25, 2484–2488.

    Article  CAS  Google Scholar 

  • Realini M. F., Gonzalez G. E., Font F., Picca P. I., Poggio L. and Gottlieb A. M. 2015 Phylogenetic relationships in Opuntia(Cactaceae, Opuntioideae) from southern South America. Plant Syst. Evol. 301, 1123–1134.

    Article  Google Scholar 

  • Reeves G., Chase M. W., Goldblatt P., Rudall P. J., Fay M. F., Cox A. V. et al. 2001 Molecular systematics of Iridaceae: evidence from four plastid DNA regions. Am. J. Bot. 88, 2074–2087.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez F., Oliver J. L., Marin A. and Medina J. R. 1990 The general stochastic model of nucleotide substitution. J. Theor. Biol. 142, 485–501.

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K., Ohme M., Tanaka M., Wakasugi T., Hayashida N., Matsubayashi T. et al. 1986 The complete nucleotide sequence of the tobacco chloroplast genome. Plant. Mol. Biol. Report. 4, 110–147.

    Article  Google Scholar 

  • Sloan D. B., Alverson A. J., Chuckalovcak J. P., Wu M., McCauley D. E. and Palmer J. D. 2012 Rapid evolution of enormous multichromosomal genomes in flowering plant mitochondria with exceptionally high mutation rates. PLoS Biol. 10, 1–17.

    Article  Google Scholar 

  • Souza-Chies T. T., Britar G., Nadot S., Carter L., Besin E. and Lejeune B. 1997 Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Syst. Evol. 204, 109–123.

    Article  Google Scholar 

  • Taberlet P., Gielly L., Pautou G. and Bouvet J. 1991 Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol. Biol. 17, 1105–1109.

    Article  CAS  PubMed  Google Scholar 

  • Takatsu Y., Miyamoto M., Inoue E., Yamada Y., Manabe T., Kasumi M. et al. 2001 Interspecific hybridization among wild Gladiolus Species of South Africa based on randomly amplified polymorphic DNA markers. Sci. Hort. 91, 339– 348.

    Article  CAS  Google Scholar 

  • Tamura K., Stecher G., Peterson D., Filipski A. and Kumar S. 2013 Mega 6: Molecular Evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry R. G., Nowak R. S. and Tausch R. J. 2000 Genetic variation in chloroplast and nuclearribosomal DNA in Utah Juniper (JuniPerus osteosperma, Cupressaceae): evidence for interspecific gene flow. Am. J. Bot. 87, 250–258.

    Article  CAS  PubMed  Google Scholar 

  • Thompson J. D., Higgins D. G. and Gibson T. J. 1994 CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valente L., Savolainen V., Manning J., Goldblatt P. and Vargas P. 2011 Explaining disparities in species richness between mediterranean floristic regions: a case study in Gladiolus (Iridaceae). Glob. Ecol. Biogeogr. 20, 881–892.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Council of Scientific and Industrial Research, New Delhi under AGTEC (BSC0110) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to TIKAM SINGH RANA.

Additional information

Corresponding editor: Umesh C. Lavania

[Singh N., Meena B., Pal A. K., Roy R. K., Tewari S. K., Tamta S. and Rana T. S. 2017 Nucleotide diversity and phylogenetic relationships among Gladiolus cultivars and related taxa of family Iridaceae. J. Genet. 96, xx–xx]

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SINGH, N., MEENA, B., PAL, A.K. et al. Nucleotide diversity and phylogenetic relationships among Gladiolus cultivars and related taxa of family Iridaceae. J Genet 96, 135–145 (2017). https://doi.org/10.1007/s12041-017-0755-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-017-0755-1

Keywords

Navigation