Skip to main content
Log in

Microsatellite markers suggest high genetic diversity in an urban population of Cooper’s hawks (Accipiter cooperii)

  • ONLINE RESOURCES
  • Published:
Journal of Genetics Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

References

  • Barrett R. D. and Schluter D. 2008 Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44.

    Article  PubMed  Google Scholar 

  • Boal C. W. and Mannan R. W. 1998 Nest-site selection by Cooper’s Hawks in an urban environment. J. Wildl. Manage. 62, 864–871.

    Article  Google Scholar 

  • Boal C. W. and Mannan R. W. 1999 Comparative breeding ecology of Cooper’s hawks in urban and exurban areas of southeastern Arizona. J. Wildl. Manage. 63, 77–84.

    Article  Google Scholar 

  • Boggie M. A. and Mannan R. W. 2014 Examining seasonal patterns of space use to gauge how an accipiter responds to urbanization. Landscape Urban Plan 124, 34–42.

    Article  Google Scholar 

  • Botstein D., White R. L., Skolnick M. and Davis R. W. 1980 Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawnay N., Ogden R., Wetton J. H., Thorpe R. S. and McEwing R. 2009 Genetic data from 28 STR loci for forensic individual identification and parentage analyses in 6 bird of prey species. Forensic Sci. Int. Genet. 3, e63–e69.

    Article  CAS  PubMed  Google Scholar 

  • De Volo S. B., Reynolds R. T., Topinka J. R., May B. and Antolin M. F. 2005 Population genetics and genotyping for mark-recapture studies of Northern Goshawks (Accipiter gentilis) on the Kaibab plateau, Arizona. J. Raptor Res. 39, 286–295.

    Google Scholar 

  • Estes W. A. and Mannan R. W. 2003 Feeding behavior of Cooper’s Hawks at urban and rural nests in southeastern Arizona. Condor 105, 107–116.

    Article  Google Scholar 

  • Francis R. A. and Chadwick M. A. 2012 What makes a species synurbic? Appl. Geogr. 32, 514–521.

    Article  Google Scholar 

  • Fry J., Xian G., Jin S., Dewitz J., Homer C., Yang L. et al. 2011 Completion of the 2006 National land cover database for the conterminous United States. Photogramm. Eng. Remote Sensing 77, 858–864.

    Google Scholar 

  • Kalinowski S. T., Taper M. L. and Marshall T. C. 2007 Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106.

    Article  PubMed  Google Scholar 

  • Kashi Y. and King D. G. 2006 Simple sequence repeats as advantageous mutators in evolution. Trends Genet. 22, 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Kopelman N. M., Mayzel J., Jakobsson M., Rosenberg N. A. and Mayrose I. 2015 CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luniak M. 2004 Synurbization – adaptation of animal wildlife to urban development. In Proceedings of the 4th International Symposium on Urban Wildlife Conservation (ed. W. Shaw, L. K. Harris and L. Van Druff). University of Arizona, Tucson, USA.

  • Mannan R. W., Estes W. A. and Matter W. J. 2004 Movements and survival of fledgling Cooper’s hawks in an urban environment . J. Raptor Res. 38, 26–34.

    Google Scholar 

  • Nei M. 1978 Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ortego J., González E. G., Sánchez-Barbudo I., Aparicio J. M. and Cordero P. J. 2007 Novel highly polymorphic loci and cross-amplified microsatellites for the lesser kestrel Falco naumanni. Ardeola 54, 101–108.

    Google Scholar 

  • Peakall R. and Smouse P. E. 2012 GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearlstine E. V. 2004 Variation in mitochondrial DNA of four species of migratory raptors. J. Raptor Res. 38, 250–255.

    Google Scholar 

  • Pearse D. E. and Crandall K. A. 2004 Beyond FST: analysis of population genetic data for conservation. Conserv. Genet. 5, 585–602.

    Article  CAS  Google Scholar 

  • Pritchard J. K., Stephens M. and Donnelly P. 2000 Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Putman A. I. and Carbone I. 2014 Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol. Evol. 4, 4399–4428.

    PubMed  PubMed Central  Google Scholar 

  • Ramalho C. E. and Hobbs R. J. 2012 Time for a change: dynamic urban ecology. Trends Ecol. Evol. 27, 179–188.

    Article  PubMed  Google Scholar 

  • Ramos P. S., Bastos E., Mannan R. W. and Guedes-Pinto H. 2009 Polymerase chain reaction-single strand conformation polymorphism applied to sex identification of Accipiter cooperii. Mol. Cell. Probes 23, 115–118.

    Article  CAS  PubMed  Google Scholar 

  • Redford K. H., Amato G., Baillie J., Beldomenico P., Bennett E. L., Clum N. et al. 2011 What does it mean to successfully conserve a (vertebrate) species? Bioscience 61, 39–48.

    Article  Google Scholar 

  • Rice W. R. 1989 Analyzing tables of statistical tests. Evolution 43, 223–225.

    Article  Google Scholar 

  • Riegert J., Fainová D. and Bystřická D. 2010 Genetic variability, body characteristics and reproductive parameters of neighbouring rural and urban common kestrel (Falco tinnuculus) populations. Popul. Ecol. 52, 73–79.

    Article  Google Scholar 

  • Rosenberg M. S. and Anderson C. D. 2011 PASSaGE: pattern analysis, spatial statistics and geographic exegesis, ver. 2. Methods Ecol. Evol. 2, 229–232.

    Article  Google Scholar 

  • Rosenfield R. N. and Bielefeldt J. 1993 Cooper’s hawk (Accipiter cooperii). In The birds of North America, No. 75 (ed. A. Poole and F. Gill). The Academy of Natural Sciences, Philadelphia, USA; and The American Ornithologists’ Union, Washington, USA.

  • Rousset F. 2008 Genepop’007: a complete reimplementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106.

    Article  PubMed  Google Scholar 

  • Rutkowski R., Rejt L. and Szczuka A. 2006 Analysis of microsatellite polymorphism and genetic differentiation in urban and rural kestrels Falco tinnunculus (L.). Pol. J. Ecol. 54, 473–480.

    CAS  Google Scholar 

  • Rutkowski R., Rejt Ł., Tereba A., Gryczyńska-Siemia̧tkowska̧ A. and Janic B. 2010 Population genetic structure of the European kestrel Falco tinnunculus in Central Poland. Eur. J. Wildl. Res. 56, 297–305.

    Article  Google Scholar 

  • Savard J. P. L., Clergeau P. and Mennechez G. 2000 Biodiversity concepts and urban ecosystems. Landsc. Urban Plan 48, 131–142.

    Article  Google Scholar 

  • Selkoe K. A. and Toonen R. J. 2006 Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol. Lett. 9, 615–629.

    Article  PubMed  Google Scholar 

  • Sonsthagen S. A., Rosenfield R. N., Bielefeldt J., Murphy R. K., Stewart A. C., Stout W. E. et al. 2012 Genetic and morphological divergence among Cooper’s hawk (Accipiter cooperii) populations breeding in north-central and western North America. Auk 129, 427–437.

    Article  Google Scholar 

  • Stout W. E. and Rosenfield R. N. 2010 Colonization, growth, and density of a pioneer Cooper’s Hawk population in a large metropolitan environment. J. Raptor Res. 44, 255–267.

    Article  Google Scholar 

  • Sultan S. E. 2007 Development in context: the timely emergence of eco-devo. Trends Ecol. Evol. 22, 575–582.

    Article  PubMed  Google Scholar 

  • Topinka J. R. and May B. 2004 Development of polymorphic microsatellite loci in the Northern Goshawk (Accipiter gentilis) and cross-amplification in other raptor species. Conserv. Genet. 5, 861–864.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Lisa Bates from Tucson Wildlife Centre for the A. cooperii sample reference. We thank the Portuguese Foundation for Science and Technology (FCT) for the Ph.D. Grant SFRH/BD/77872/2011 to F. Morinha. This work was partially supported by a grant from Fundação Luso-Americana para o Desenvolvimento (FLAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to FRANCISCO MORINHA.

Additional information

Corresponding editor: Indrajit Nanda

[Morinha F., Ramos P. S., Gomes S., Mannan R. W., Guedes-Pinto H. and Bastos E. 2016 Microsatellite markers suggest high genetic diversity in an urban population of Cooper’s hawks (Accipiter cooperii). J. Genet. 95, e19–e24. Online only: http://www.ias.ac.in/jgenet/OnlineResources/95/e19.pdf]

This study was designed, developed, analysed and totally supported by Institute for Biotechnology and Bioengineering, Centre of Genomics and Biotechnology, University of Trás-os-Montes and Alto Douro (IBB/CGB-UTAD), Quinta de Prados, P.O. Box 1013, 5000-801 Vila Real, Portugal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MORINHA, F., RAMOS, P.S., GOMES, S. et al. Microsatellite markers suggest high genetic diversity in an urban population of Cooper’s hawks (Accipiter cooperii). J Genet 95 (Suppl 1), 19–24 (2016). https://doi.org/10.1007/s12041-016-0695-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-016-0695-1

Keywords

Navigation