Skip to main content
Log in

Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Meiotic restitution is considered to be a common mechanism of polyploidization in plants and hence is one of the most important processes in plant speciation. Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled haploid (DH) line), grown at two planting dates in the field. In addition, two local landraces of emmer wheat (Triticum turgidum ssp. dicoccum), one wheat cultivar (Chinese spring), one DH triticale cultivar (Eleanor) and one rye accession were included. Immature spikes of mid-autumn and end-winter sowing plants were collected in April and May 2008, respectively, fixed in Carnoy’s solution and stained with hematoxylin. Pollen mother cells (PMCs) from anthers at different stages of meiotic process were analysed for their chromosomal behaviour and irregularities. Meiotic aberrations such as laggards, chromosome bridges, micronuclei, abnormal cytokines, chromatin pulling and meiotic restitution were observed and the studied genotypes were accordingly ranked as follows: triticale > synthetic hexaploid wheats > tetraploid wheats possessing meiotic restitution > tetraploid wheats lacking meiotic restitution > rye. The results indicated that the samples that had been planted in the autumn, thus experiencing an optimum temperature level at the flowering stage, exhibited less meiotic irregularities than winter planting samples that encountered heat stress at the flowering period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad Q. N., Britten E. J. and Byth D. E. 1984 Effect of interacting genetic factors and temperature on meiosis and fertility in soybean × Glycine soja. Can. J. Genet. Cytol. 26, 50–56.

    Google Scholar 

  • Bajpai A. and Singh A. K. 2006 Meiotic behavior of Carica papaya L.: spontaneous chromosome instability and elimination in important cvs. in north Indian conditions. Cytologia 71, 131–136.

    Article  Google Scholar 

  • Baker J. T., Allen Jr L. H. and Boote K. J. 1992 Temperature effects on rice at elevated CO2 concentration. J. Exp. Bot. 43, 959–964.

    Article  Google Scholar 

  • Balatero C. H. and Darvey N. L. 1993 Influence of selected wheat and rye genotypes on the direct synthesis of hexaploid triticale. Euphytica 66, 179–185.

    Article  Google Scholar 

  • Baptista-Giacomelli F. R., Pagliarini M. S. and Almeida J. L. 2000 Meiotic behavior in several Brazilian oat cultivars (Avena sativa L.). Cytologia 65, 371–378.

    Google Scholar 

  • Cai X. and Xu S. S. 2007 Meiosis-driven genome variation in plants. Curr. Genome 8, 151–161.

    Article  CAS  Google Scholar 

  • Camadro E. L. 1994 Second meiotic division restitution (SDR) 2n pollen formation in diploid and hexaploid species of Asparagus. Genet. Res. Crop Evol. 41, 1–7.

    Article  Google Scholar 

  • Doyle J. J., Flagel L. E., Paterson A. H., Rapp R. A., Soltis D. E., Soltis P. S. and Wendel J. F. 2008 Evolutionary genetics of genome merger and doubling in plants. Annu. Rev. Genet. 42, 443–461.

    Article  PubMed  CAS  Google Scholar 

  • Erickson A. N. and Markhart A. H. 2002 Flower developmental stage and organ sensitivity of bellpepper (Capsicum annuum L.) to elevated temperature. Plant Cell Environ. 25, 123–130.

    Article  Google Scholar 

  • Fairbanks M. M., Hardy G. E. and McComb J. A. 2002 Mitosis and meiosis in plants are affected by the fungicide phosphate. Aust. Plant Pathol. 31, 281–289.

    Article  Google Scholar 

  • Fuzinatto V. A., Pagliarini M. S. and Valle C. B. 2008 Evaluation of microsporogenesis in an interspecific Brachiaria hybrid (Poaceae) collected in distinct years. Genet. Mol. Res. 7, 424–432.

    Article  PubMed  CAS  Google Scholar 

  • Golubovskaya I. N. 1979 Genetic control of meiosis. Int. Rev. Cytol. 58, 247–290.

    Article  PubMed  CAS  Google Scholar 

  • Gupta P. K. and Priyadarshan P. M. 1982 Triticale: present status and future prospects. Adv. Genet. 21, 255–345.

    Article  Google Scholar 

  • Jauhar P. P. 2003 Formation of 2n gametes in durum wheat haploids: sexual polyploidization. Euphytica 133, 81–94.

    Article  Google Scholar 

  • Jauhar P. P. 2007 Meiotic restitution in wheat polyhaploid (amphihaploids): a potent evolutionary force. J. Hered. 98, 188–193.

    Article  PubMed  CAS  Google Scholar 

  • Jauhar P. P., Dogramaci-Altuntepe M., Peterson T. S. and Almouslem A. B. 2000 Seedset of synthetic haploid of durum wheat: cytological and molecular investigations. Crop Sci. 40, 1742–1749.

    Article  Google Scholar 

  • Kaul M. L. H. and Murthy T. G. K. 1985 Mutant genes affecting higher plant meiosis. Theor. Appl. Genet. 70, 449–466.

    Article  Google Scholar 

  • Leitch A. R. and Leitch I. J. 2008 Genomic plasticity and the diversity of polyploid plants. Science 320, 481–483.

    Article  PubMed  CAS  Google Scholar 

  • Lukaszewski A. J. and Gustafson J. P. 1987 Cytogenetics of triticale. Plant Breed. Rev. 5, 41–93.

    Google Scholar 

  • Matsuoka Y. and Nasuda D. S. 2004 Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss.Theor. Appl. Genet. 109, 1710–1717.

    Article  PubMed  Google Scholar 

  • Mok D. W. S. and Peloquin S. J. 1975 The inheritance of three mechanisms of diplandroids (2n pollen) formation in diploid potato. Heredity 35, 295–302.

    Article  Google Scholar 

  • Namuco O. S. and O’Toole J. C. 1986 Reproductive stage water stress and sterility. I. Effect of stress during meiosis. Crop Sci. 26, 317–321.

    Article  Google Scholar 

  • Negri V. and Lemmi G. 1998 Effect of selection and temperature stress on the production of 2n gametes in Lotus tenuis. Plant Breed. 117, 345–349.

    Article  Google Scholar 

  • Oettler G. 2005 The fortune of a botanical curiosity triticale: past present and future. Agric. Sci. 143, 329–346.

    Article  Google Scholar 

  • Otto S. P. 2007 The evolutionary consequences of polyploidy. Cell 131, 452–462.

    Article  PubMed  CAS  Google Scholar 

  • Pagliarini M. S. 2000 Meiotic behavior of economically important plant species: the relationship between fertility and male sterility. Genet. Mol. Biol. 23, 997–1002.

    Article  Google Scholar 

  • Porch T. G. and Jahn M. 2001 Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant Cell Environ. 24, 723–731.

    Article  Google Scholar 

  • Ramanna M. S. and Jacobsen E. 2003 Relevance of sexual polyploidization for crop improvement—a review. Euphytica 133, 3–18.

    Article  Google Scholar 

  • Rieseberg L. H. and Willis J. H. 2007 Plant speciation. Science 317, 910–914.

    Article  PubMed  CAS  Google Scholar 

  • Saini H. S. 1997 Effect of water stress on male gametophyte development in plant. Sex. Plant Reprod. 10, 67–73.

    Article  Google Scholar 

  • Sang T., Pan J., Zhang D., Ferguson D., Wang C., Hong D. Y. and Pan K. U. 2004 Origins of polyploids: an example from peonies (Paeonia) and a model for angiosperms. Biol. J. Linn. Soc. 82, 561–571.

    Article  Google Scholar 

  • SAS Institute 2003 SAS/STAT User’s Guide, version 9. 1. SAS Institute, Cary, USA.

    Google Scholar 

  • Sato S., Peet M.M. and Thomas J. F. 2002 Determining critical preand post-anthesis periods and physiological processes in Lycopersicon esculentum Mill. exposed to moderately elevated temperatures. J. Exp. Bot. 53, 1187–1195.

    Article  PubMed  CAS  Google Scholar 

  • Sato S., Kamiyama M., Iwata T., Makita N., Furukawa H. and Ikeda H. 2006 Moderate increase of mean daily temperature adversely affects fruit set of Lycopersicon esculentum by disrupting specific physiological processes in male reproductive development. Ann. Bot. 97, 731–738.

    Article  PubMed  CAS  Google Scholar 

  • Sayed-Tabatabaei B. E. 1996 Meiotic restitution and tissue culture in wheat and triticale. Ph.D. thesis. The University of Sydney, Sydney, Australia.

    Google Scholar 

  • Sheidai M. and Fadaei F. 2005 Cytogenetic studies in some species of Bromus L., section Genea Dum. J. Genet. 84, 189–194.

    Article  PubMed  Google Scholar 

  • Silkova O. G., Shchapova A. I. and Shumny V. K. 2007 Role of rye chromosome 2R from wheat-rye substitution line 2R(2D) (Triticum aestivum L. cv. Saratovskaya 29 Secale cereale L. cv. Onokhoiskaya) in genetic regulation of meiotic restitution in wheat rye polyhaploids. Russ. J. Genet. 43, 805–814.

    Article  CAS  Google Scholar 

  • Sun K., Hunt K. and Hauser B. A. 2004 Ovule abortion in Arabidopsis triggered by stress. Plant Physiol. 135, 2358–2367.

    Article  PubMed  CAS  Google Scholar 

  • Tai W. 1970 Multipolar meiosis in diploid crested wheat grass, Agropyron cristatum. Am. J. Bot. 57, 1160–1169.

    Article  Google Scholar 

  • Veilleux R. E. and Lauer F. I. 1981 Variation for 2n pollen production in clones of Solanum phureja Juz. and Buk. Theor. Appl. Genet. 59, 95–100.

    Article  Google Scholar 

  • Viccini L. F. and Carvalho C. R. 2002 Meiotic chromosomal variation resulting from irradiation of pollen in maize. J. Appl. Genet. 43, 463–469.

    PubMed  Google Scholar 

  • Xu S. J. and Joppa L. R. 2000 First-division restitution in hybrids of Langdon durum disomic substitution lines with rye and Aegilops squarrosa. Plant. Breed. 119, 233–241.

    Article  Google Scholar 

  • Zhang L. Q., Yen Y., Zheng Y. L. and Liu D. C. 2007 Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines. Sex. Plant. Reprod. 20, 159–166.

    Article  Google Scholar 

  • Zhang L. Q., Liu D. C., Zheng Y. L., Yan Z. H., Dai S. F., Li Y. F. et al. 2009 Frequent occurrence of unreduced gametes in Triticum turgidum-Aegilops tauschii hybrids. Euphytica 172, 285–294.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Arzani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaei, M., Arzani, A. & Sayed-Tabatabaei, B.E. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.) and their synthetic hexaploid wheat derivates influenced by meiotic restitution and heat stress. J Genet 89, 401 (2010). https://doi.org/10.1007/s12041-010-0058-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12041-010-0058-2

Keywords

Navigation