Skip to main content
Log in

Lamin C and chromatin organization in Drosophila

  • Research Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

Drosophila lamin C (LamC) is a developmentally regulated component of the nuclear lamina. The lamC gene is situated in the fifth intron of the essential gene tout velu (ttv). We carried out genetic analysis of lamC during development. Phenotypic analyses of RNAi-mediated downregulation of lamC expression as well as targeted misexpression of lamin C suggest a role for lamC in cell survival. Of particular interest in the context of laminopathies is the caspase-dependent apoptosis induced by the overexpression of lamin C. Interestingly, misexpression of lamin C in the central nervous system, where it is not normally expressed, did not affect organization of the nuclear lamina. lamC mutant alleles suppressed position effect variegation normally displayed at near-centromeric and telomeric regions. Further, both downregulation and misexpression of lamin C affected the distribution of heterochromatin protein 1. Our results suggest that Drosophila lamC has a tissue-specific role during development and is required for chromatin organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellaiche Y., The I. and Perrimon N. 1998 Tout-velu is a Drosophila homologue of the putative tumour suppressor EXT-1 and is needed for Hh diffusion. Nature 394, 85–88.

    Article  PubMed  CAS  Google Scholar 

  • Bossie C. A. and Sanders M. M. 1993 A cDNA from Drosophila melanogaster encodes a Lamin C-like intermediate filament protein. J. Cell Sci. 104, 1263–1272.

    PubMed  CAS  Google Scholar 

  • Brand A. H. and Perrimon N. 1993 Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415.

    PubMed  CAS  Google Scholar 

  • Broers J. L., Ramaekers F. C., Bonne G., Yaou R. B. and Hutchison C. J. 2006 Nuclear Lamins: Laminopathies and their role in premature ageing. Physiol. Rev. 86, 967–1008.

    Article  PubMed  CAS  Google Scholar 

  • Calleja M., Moreno E., Pelaz S. and Morata G. 1996 Visualization of gene expression in living adult Drosophila. Science 274, 252–255.

    Article  PubMed  CAS  Google Scholar 

  • Capanni C., Mattioli E., Columbaro M., Lucarelli E., Parnaik V. K., Novelli G. et al. 2005 Altered pre-Lamin A processing is a common mechanism leading to lipodystrophy. Hum. Mol. Genet. 14, 1489–1502.

    Article  PubMed  CAS  Google Scholar 

  • Capell B. C. and Collins F. S. 2006 Human Laminopathies: nuclei gone genetically awry. Nat. Rev. Genet. 7, 940–952.

    Article  PubMed  CAS  Google Scholar 

  • Cohen M., Lee K. K., Wilson K. L. and Gruenbaum Y. 2001 Transcriptional repression, apoptosis, human disease and the functional evolution of the nuclear Lamina. Trends Biochem. Sci. 26, 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Collard J.-F. and Raymond Y. 1990 Transfection of human Lamins A and C into mouse embryonal carcinoma cells possessing only Lamin B. Exp. Cell Res. 186, 182–187.

    Article  PubMed  CAS  Google Scholar 

  • Columbaro M., Capanni C., Mattioli E., Novelli G., Parnaik V. K., Squarzoni S. et al. 2005 Rescue of heterochromatin organization in Hutchinson-Gilford progeria by drug treatment. Cell. Mol. Life Sci. 62, 2669–2678.

    Article  PubMed  CAS  Google Scholar 

  • Cryderman D. E., Morris E. J., Biessmann H., Elgin S. C. and Wallrath L. L. 1999 Silencing at Drosophila telomeres: nuclear organization and chromatin structure play critical roles. EMBO J. 18, 3724–3735.

    Article  PubMed  CAS  Google Scholar 

  • Danzer J. R. and Wallrath L. L. 2004 Mechanisms of HP1-mediated gene silencing in Drosophila. Development 131, 3571–3580.

    Article  PubMed  CAS  Google Scholar 

  • Dechat T., Pfleghaar K., Sengupta K., Shimi T., Shumaker D. K., Solimando L. and Goldman R. D. 2008 Nuclear Lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22, 832–853.

    Article  PubMed  CAS  Google Scholar 

  • Eissenberg J. C. and Elgin S. C. 2000 The HP1 protein family: getting a grip on chromatin. Curr. Opin. Genet. Dev. 10, 204–210.

    Article  PubMed  CAS  Google Scholar 

  • Favreau C., Dubosclard E., Östlund C., Vigouroux C., Capeau J., Wehnert M. et al. 2003 Expression of Lamin A mutated in the carboxyl-terminal tail generates an aberrant nuclear phenotype similar to that observed in cells from patients with Dunnigantype partial lipodystrophy and Emery-Dreifuss muscular dystrophy. Exp. Cell Res. 282, 14–23.

    Article  PubMed  CAS  Google Scholar 

  • Favreau C., Higuet D., Courvalin J.-C. and Buendia B. 2004 Expression of a mutant Lamin A that causes Emery-Dreifuss muscular dystrophy inhibits in vitro differentiation of C2C12 myoblasts. Mol. Cell. Biol. 24, 1481–1492.

    Article  PubMed  CAS  Google Scholar 

  • Giordano E., Rendina R., Peluso I. and Furia M. 2002 RNAi triggered by symmetrically transcribed transgenes in Drosophila melanogaster. Genetics 160, 637–648.

    PubMed  CAS  Google Scholar 

  • Goldberg M., Lu H., Stuurman N., Ashery Padan R., Weiss A. M., Yu J. et al. 1998 Interactions among Drosophila nuclear envelope proteins Lamin, otefin and YA. Mol. Cell Biol. 18, 4315–4323.

    PubMed  CAS  Google Scholar 

  • Goldman R. D., Gruenbaum Y., Moir R. D., Shumaker D. K. and Spann T. P. 2002 Nuclear lamins: Building blocks of nuclear architecture. Genes Dev. 16, 533–547.

    Article  PubMed  CAS  Google Scholar 

  • Goldman R. D., Shumakerv D. K., Erdos M. R., Eriksson M., Goldman A. E., Gordon L. B. et al. 2004 Accumulation of mutant Lamin A causes progressive changes in nuclear architecture in Hutchinson-Gilford progeria syndrome. Proc. Natl. Acad. Sci. USA 101, 8963–8968.

    Article  PubMed  CAS  Google Scholar 

  • Gruenbaum Y., Landesman Y., Drees B., Bare J. W., Saumweber H., Paddy M. R. et al. 1988 Drosophila nuclear Lamin precursor Dm0 is translated from either of two developmentally regulated mRNA species apparently encoded by a single gene. J. Cell Biol. 106, 585–596.

    Article  PubMed  CAS  Google Scholar 

  • Halfon M. S., Gisselbrecht S., Lu J., Estrada B., Keshishian H. and Michelson A. M. 2002 New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34, 135–138.

    Article  PubMed  CAS  Google Scholar 

  • Hari K. L., Cook K. R. and Karpen K. H. 2001 The Drosophila Su(var)2–10 locus regulates chromosome structure and function and encodes a member of the PIAS protein family. Genes Dev. 15, 1334–1348.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann H., Bar H., Kreplak L., Strelkov S. V. and Aebi U. 2007 Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8, 562–573.

    Article  PubMed  CAS  Google Scholar 

  • Horton H., McMorrow I. and Burke B. 1992 Independent expression and assembly properties of heterologous Lamins A and C in murine embryonal carcinomas. Eur. J. Cell Biol. 57, 172–183.

    PubMed  CAS  Google Scholar 

  • Hozak P., Sasseville A. M.-J., Raymond Y. and Cook P. R. 1995 Lamin proteins form an internal nucleoskeleton as well as a peripheral Lamina in human cells. J. Cell Sci. 108, 635–644.

    PubMed  CAS  Google Scholar 

  • Jagatheesan G., Thanumalayan S., Muralikrishna B., Rangaraj N., Karande A. A. and Parnaik V. K. 1999 Colocalization of intranuclear Lamin foci with RNA splicing factors. J. Cell Sci. 112, 4651–4661.

    PubMed  CAS  Google Scholar 

  • James T. C., Eissenberg J. C., Craig C., Dietrich V., Hobson A. and Elgin S. C. R. 1989 Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur. J. Cell Biol. 50, 170–180.

    PubMed  CAS  Google Scholar 

  • Kellum R. and Alberts B. M. 1995 Heterochromatin protein 1 is required for correct chromosome segregation in Drosophila embryos. J. Cell Sci. 108, 1419–1431.

    PubMed  CAS  Google Scholar 

  • Kumaran R. I., Muralikrishna Bh and Parnaik V. K. 2002 Lamin A/C speckles mediate spatial organisation of splicing factor compartments and RNA polymerase II transcription. J. Cell Biol. 159, 783–793.

    Article  PubMed  CAS  Google Scholar 

  • Lammerding J., Schulze P. C., Takahashi T., Kozlov S., Sullivan T., Kamm R. D. et al. 2004 Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J. Clin. Invest. 113, 370–378.

    PubMed  CAS  Google Scholar 

  • Lavrov S., Dejardin J. and Cavalli G. 2004 Combined immunostaining and FISH analysis of polytene chromosomes. Methods Mol. Biol. 247, 289–303.

    PubMed  CAS  Google Scholar 

  • Lloyd D. J., Trembath R. C. and Shackleton S. 2002 A novel interaction between Lamin A and SREBP1: implications for partial lipodystrophy and other Laminopathies. Hum. Mol. Genet. 11, 769–777.

    Article  PubMed  CAS  Google Scholar 

  • Manju K., Muralikrishna B. and Parnaik V. K. 2006 Expression of disease-causing Lamin mutants impairs the formation of DNA repair foci. J. Cell Sci. 119, 2704–2714.

    Article  PubMed  CAS  Google Scholar 

  • Mariappan I. and Parnaik V. K. 2005 Sequestration of pRb by cyclin D3 causes intranuclear reorganization of Lamin A/C during muscle cell differentiation. Mol. Biol. Cell 16, 1948–1960.

    Article  PubMed  CAS  Google Scholar 

  • Melcer S., Gruenbaum Y. and Krohne G. 2007 Invertebrate Lamins. Exp. Cell Res. 313, 2157–2166.

    Article  PubMed  CAS  Google Scholar 

  • Moir R. D., Montag-Lowy M. and Goldman R. D. 1994 Dynamic properties of nuclear Lamins: Lamin B is associated with sites of DNA replication. J. Cell Biol. 125, 1201–1212.

    Article  PubMed  CAS  Google Scholar 

  • Moir R. D., Yoon M., Khuon S. and Goldman R. D. 2000 Nuclear Lamins A and B1: Different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168.

    Article  PubMed  CAS  Google Scholar 

  • Morin X., Daneman R., Zavortink M. and Chia W. 2001 A protein trap strategy to detect GFP-tagged proteins expressed from their endogenous loci in Drosophila. Proc. Natl. Acad. Sci. USA 98, 15050–15055.

    Article  PubMed  CAS  Google Scholar 

  • Muralikrishna B., Dhawan J., Rangaraj N. and Parnaik V. K. 2001 Distinct changes in intranuclear Lamin A/C organisation during myoblast differentiation. J. Cell Sci. 114, 4001–4011.

    PubMed  CAS  Google Scholar 

  • Nikolova V., Leimena C., McMahon A. C., Tan J. C., Chandar S., Jogia D. et al. 2004 Defects in nuclear structure and function promote dilated cardiomyopathy in Lamin A/C-deficient mice. J. Clin. Invest. 113, 357–369.

    PubMed  CAS  Google Scholar 

  • Oh S. W., Kingsley T., Shin H. H., Zheng Z., Chen H. W., Chen X. et al. 2003 A P- element insertion screen identified mutations in 455 novel essential genes in Drosophila. Genetics 163, 195–201.

    PubMed  CAS  Google Scholar 

  • Östlund C., Bonne G., Schwartz K. and Worman H. J. 2001 Properties of Lamin A mutants found in Emery-Dreifuss muscular dystrophy, cardiomyopathy and Dunnigan-type partial lipodystrophy. J. Cell Sci. 114, 4435–4445.

    PubMed  Google Scholar 

  • Ozaki T., Saijo M., Murakanu K., Enomoto H., Taya Y. and Sakiyama S. 1994 Complex formation between Lamin A and the retinoblastoma gene product: identification of the domain on Lamin A required for its interaction. Oncogene 9, 2649–2653.

    PubMed  CAS  Google Scholar 

  • Pallavi S. K. and Shashidhara L. S. 2003 Egfr/Ras pathway mediates interactions between peripodial and disc proper cells in Drosophila wing discs. Development 130, 4931–4941.

    Article  PubMed  CAS  Google Scholar 

  • Parnaik V. K. 2008 Role of nuclear Lamins in nuclear organization, cellular signaling and inherited diseases. Int. Rev. Cell Mol. Biol. 266, 157–206.

    Article  PubMed  CAS  Google Scholar 

  • Parnaik V. K. and Manju K. 2006 Laminopathies: multiple disorders arising from defects in nuclear architecture. J. Biosci. 31, 405–421.

    Article  PubMed  CAS  Google Scholar 

  • Patel N. H., Martin-Blanco E., Coleman K. G., Poole S. J., Ellis M. C., Kornberg T. B. and Goodman C. S. 1989 Expression of engrailed proteins in arthropods, annelids, and chordates. Cell 58, 955–968.

    Article  PubMed  CAS  Google Scholar 

  • Peter M. and Nigg E. A. 1991 Ectopic expression of an Atype Lamin does not interfere with differentiation of Lamin Anegative embryonal carcinoma cells. J. Cell Sci. 100, 589–598.

    PubMed  CAS  Google Scholar 

  • Pickersgill H., Kalverda B., de Wit E., Talhout W., Fornerod M. and van Steensel B. 2006 Characterization of the Drosophila melanogaster genome at the nuclear Lamina. Nat. Genet. 38, 1005–1014.

    Article  PubMed  CAS  Google Scholar 

  • Pluta A. F., Mackay A. M., Ainsztein A. M., Goldberg I. G. and Earnshaw W. C. 1995 The centromere: Hub of chromosomal activities. Science 270, 1591–1594.

    Article  PubMed  CAS  Google Scholar 

  • Raharjo W. H., Enarson P., Sullivan T., Stewart C. L. and Burke B. 2001 Nuclear envelope defects associated with LMNA mutations cause dilated cardiomyopathy and Emery-Dreifuss muscular dystrophy. J. Cell Sci. 114, 4447–4457.

    PubMed  CAS  Google Scholar 

  • Reuter G., Werner W. and Hoffmann H. J. 1982 Mutants affecting position-effect heterochromatinization in Drosophila melanogaster. Chromosoma 85, 539–551.

    Article  PubMed  CAS  Google Scholar 

  • Riemer D., Stuurman N., Berrios M., Hunter C., Fisher P. A. and Weber K. 1995 Expression of Drosophila Lamin C is developmentally regulated: analogies with vertebrate A-type Lamins. J. Cell Sci. 108, 3189–3198.

    PubMed  CAS  Google Scholar 

  • Schulze S. R., Curio-Penny B., Li Y., Imani R. A., Rydberg L., Geyer P. K. and Wallrath L. L. 2005 Molecular genetic analysis of the nested Drosophila melanogaster Lamin C gene. Genetics 171, 185–196.

    Article  PubMed  CAS  Google Scholar 

  • Shashidhara L. S., Agrawal N., Bajpai R., Bharathi V. and Sinha P. 1999 Negative regulation of dorsoventral signaling by the homeotic gene Ultrabithorax during haltere development in Drosophila. Dev. Biol. 212, 491–502.

    Article  PubMed  CAS  Google Scholar 

  • Shumaker D. K., Dechat T., Kohlmaier A., Adam S. A., Bozovsky M. R., Erdos M. R. et al. 2006 Mutant nuclear Lamin A leads to progressive alterations of epigenetic control in premature aging. Proc. Natl. Acad. Sci. USA 103, 8703–8708.

    Article  PubMed  CAS  Google Scholar 

  • Shyamala B. V. and Chopra A. 1999 Drosophila melanogaster chemosensory and muscle development: identification and properties of a novel allele of scalloped and of a new locus, SG18.1, in a Gal4 enhancer trap screen. J. Genet. 78, 87–97.

    Article  CAS  Google Scholar 

  • Sinclair D. A., Mottus R. C. and Grigliatti T. A. 1983 Genes which suppress position- effect variegation in Drosophila melanogaster are clustered. Mol. Gen. Genet. 191, 326–333.

    Article  CAS  Google Scholar 

  • Spann T. P., Goldman A. E., Wang C., Huang S. and Goldman R. D. 2002 Alteration of nuclear Lamin organisation inhibits RNA polymerase II-dependent transcription. J. Cell Biol. 156, 603–608.

    Article  PubMed  CAS  Google Scholar 

  • Stuurman N., Delbecque J. P., Callaerts P. and Aebi U. 1999 Ectopic overexpression of Drosophila Lamin C is stage-specific lethal. Exp. Cell Res. 248, 350–357.

    Article  PubMed  CAS  Google Scholar 

  • Sullivan T., Escalante-Alcade D., Bhatt H., Anver M., Bhat N., Nagashima K. et al. 1999 Loss of A-type Lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147, 913–920.

    Article  PubMed  CAS  Google Scholar 

  • The I., Bellaiche Y. and Perrimon N. 1999 Hedgehog movement is regulated through tout-velu-dependent synthesis of a heparan sulfate proteoglycan. Mol. Cell 4, 633–639.

    Article  PubMed  CAS  Google Scholar 

  • Wallrath L. L. 1998 Unfolding the mysteries of heterochromatin. Curr. Opin. Genet. Dev. 8, 147–153.

    Article  PubMed  CAS  Google Scholar 

  • Weiler K. S. and Wakimoto B. T. 1995 Heterochromatin and gene expression in Drosophila. Annu. Rev. Genet. 29, 577–605.

    Article  PubMed  CAS  Google Scholar 

  • Wilson K. 2000 The nuclear envelope, muscular dystrophy and gene expression. Trends Cell Biol. 10, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Worman H. J. and Courvalin J.-C. 2005 Nuclear envelope, nuclear Lamina and inherited disease. Int. Rev. Cytol. 246, 231–279.

    Article  PubMed  CAS  Google Scholar 

  • Zastrow M. S., Vicek S. and Wilson K. L. 2004 Proteins that bind A-type Lamins: integrated isolated clues. J. Cell Sci. 117, 979–987.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. S. Shashidhara or Veena K. Parnaik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurudatta, B.V., Shashidhara, L.S. & Parnaik, V.K. Lamin C and chromatin organization in Drosophila . J Genet 89, 37–49 (2010). https://doi.org/10.1007/s12041-010-0009-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-010-0009-y

Keywords

Navigation