Skip to main content

Advertisement

Log in

Energy-responsive timekeeping

  • Review Article
  • Published:
Journal of Genetics Aims and scope Submit manuscript

Abstract

An essential component of energy homeostasis lies in an organism’s ability to coordinate daily patterns in activity, feeding, energy utilization and energy storage across the daily 24-h cycle. Most tissues of the body contain the molecular clock machinery required for circadian oscillation and rhythmic gene expression. Under normal circumstances, behavioural and physiological rhythms are orchestrated and synchronized by the suprachiasmatic nucleus (SCN) of the hypothalamus, considered to be the master circadian clock. However, metabolic processes are easily decoupled from the primarily light-driven SCN when food intake is desynchronized from normal diurnal patterns of activity. This dissociation from SCN based timing demonstrates that the circadian system is responsive to changes in energy supply and metabolic status. There has long been evidence for the existence of an anatomically distinct and autonomous food-entrainable oscillator (FEO) that can govern behavioural rhythms, when feeding becomes the dominant entraining stimulus. But now rapidly growing evidence suggests that core circadian clock genes are involved in reciprocal transcriptional feedback with genetic regulators of metabolism, and are directly responsive to cellular energy supply. This close interaction is likely to be critical for normal circadian regulation of metabolism, and may also underlie the disruption of proper metabolic rhythms observed in metabolic disorders, such as obesity and type-II diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe M., Herzog E. D., Yamazaki S., Straume M., Tei H., Sakaki Y. et al. 2002 Circadian rhythms in isolated brain regions. J. Neurosci. 22, 350–356.

    PubMed  CAS  Google Scholar 

  • Adelmant G., Begue A., Stehelin D. and Laudet V. 1996 A functional Rev-erb alpha responsive element located in the human Rev-erb alpha promoter mediates a repressing activity. Proc. Natl. Acad. Sci. USA 93, 3553–3558.

    Article  PubMed  CAS  Google Scholar 

  • Akhtar R. A., Reddy A. B., Maywood E. S., Clayton J. D., King V. M., Smith A. G. et al. 2002 Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12, 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Ando H., Yanagihara H., Hayashi Y., Obi Y., Tsuruoka S., Takamura T. et al. 2005 Rhythmic messenger ribonucleic acid expression of clock genes and adipocytokines in mouse visceral adipose tissue. Endocrinology 146, 5631–5636.

    Article  PubMed  CAS  Google Scholar 

  • Angeles-Castellanos M., Aguilar-Roblero R. and Escobar C. 2004 c-Fos expression in hypothalamic nuclei of food-entrained rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R158–R165.

    PubMed  CAS  Google Scholar 

  • Asher G., Gatfield D., Stratmann M., Reinke H., Dibner C., Kreppel F. et al. 2008 SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Balsalobre A., Brown S. A., Marcacci L., Tronche F., Kellendonk C., Reichardt H. M. et al. 2000 Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289, 2344–2347.

    Article  PubMed  CAS  Google Scholar 

  • Bando H., Nishio T., van der Horst G. T., Masubuchi S., Hisa Y. and Okamura H. 2007 Vagal regulation of respiratory clocks in mice. J. Neurosci. 27, 4359–4365.

    Article  PubMed  CAS  Google Scholar 

  • Bartness T. J., Song C. K. and Demas G. E. 2001 SCN efferents to peripheral tissues: implications for biological rhythms. J. Biol. Rhythms 16, 196–204.

    Article  PubMed  CAS  Google Scholar 

  • Baur J. A., Pearson K. J., Price N. L., Jamieson H. A., Lerin C., Kalra A. et al. 2006 Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Bechtold D. A., Brown T. M., Luckman S. M. and Piggins H. D. 2008 Metabolic rhythm abnormalities in mice lacking VIPVPAC2 signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R344–R351.

    PubMed  CAS  Google Scholar 

  • Berthoud H. R. 2002 Multiple neural systems controlling food intake and body weight. Neurosci. Biobehav. Rev. 26, 393–428.

    Article  PubMed  Google Scholar 

  • Blundell J. E. and Gillett A. 2001 Control of food intake in the obese. Obes. Res. 9,suppl. 4, 263S–270S.

    Article  PubMed  CAS  Google Scholar 

  • Boden G., Chen X. and Polansky M. 1999 Disruption of circadian insulin secretion is associated with reduced glucose uptake in first-degree relatives of patients with type 2 diabetes. Diabetes 48, 2182–2188.

    Article  PubMed  CAS  Google Scholar 

  • Bordone L., Motta M. C., Picard F., Robinson A., Jhala U. S., Apfeld J. et al. 2006 Sirt1 regulates insulin secretion by repressing UCP2 in pancreatic beta cells. PLoS Biol. 4, e31.

    Article  PubMed  CAS  Google Scholar 

  • Boulos Z. and Terman M. 1980 Food availability and daily biological rhythms. Neurosci. Biobehav. Rev. 4, 119–131.

    Article  PubMed  CAS  Google Scholar 

  • Brunet A., Sweeney L. B., Sturgill J. F., Chua K. F., Greer P. L., Lin Y. et al. 2004 Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303, 2011–2015.

    Article  PubMed  CAS  Google Scholar 

  • Buijs R. M. and Kreier F. 2006 The metabolic syndrome: a brain disease? J. Neuroendocrinol. 18, 715–716.

    Article  PubMed  CAS  Google Scholar 

  • Cailotto C., van Heijningen C., van der Vliet J., van der Plasse G., Habold C., Kalsbeek A. et al. 2008 Daily rhythms in metabolic liver enzymes and plasma glucose require a balance in the autonomic output to the liver. Endocrinology 149, 1914–1925.

    Article  PubMed  CAS  Google Scholar 

  • Calvani M., Scarfone A., Granato L., Mora E. V., Nanni G., Castagneto M. et al. 2004 Restoration of adiponectin pulsatility in severely obese subjects after weight loss. Diabetes 53, 939–947.

    Article  PubMed  CAS  Google Scholar 

  • Canaple L., Rambaud J., Dkhissi-Benyahya O., Rayet B., Tan N. S., Michalik L. et al. 2006 Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. Mol. Endocrinol. 20, 1715–1727.

    Article  PubMed  CAS  Google Scholar 

  • Carling D. 2007 The role of the AMP-activated protein kinase in the regulation of energy homeostasis. Novartis Found. Symp. 286, 72–81; discussion 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Cermakian N. and Sassone-Corsi P. 2002 Environmental stimulus perception and control of circadian clocks. Curr. Opin. Neurobiol. 12, 359–365.

    Article  PubMed  CAS  Google Scholar 

  • Chaput J. P., Brunet M. and Tremblay A. 2006 Relationship between short sleeping hours and childhood overweight/obesity: results from the ‘Quebec en Forme’ Project. Int. J. Obes. (London) 30, 1080–1085.

    Article  Google Scholar 

  • Chawla A. and Lazar M. A. 1993 Induction of Rev-ErbA alpha, an orphan receptor encoded on the opposite strand of the alphathyroid hormone receptor gene, during adipocyte differentiation. J. Biol. Chem. 268, 16265–16269.

    PubMed  CAS  Google Scholar 

  • Chen M. P., Chung F. M., Chang D. M., Tsai J. C., Huang H. F., Shin S. J. and Lee Y. J. 2006 Elevated plasma level of visfatin/pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 91, 295–299.

    Article  PubMed  CAS  Google Scholar 

  • Comperatore C. A. and Stephan F. K. 1990 Effects of vagotomy on entrainment of activity rhythms to food access. Physiol. Behav. 47, 671–678.

    Article  PubMed  CAS  Google Scholar 

  • Cone R. D., Cowley M. A., Butler A. A., Fan W., Marks D. L. and Low M. J. 2001 The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. Int. J. Obes. Relat. Metab. Disord. 25,suppl. 5, S63–S67.

    Article  PubMed  CAS  Google Scholar 

  • Curtis A. M., Seo S. B., Westgate E. J., Rudic R. D., Smyth E. M., Chakravarti D. et al. 2004 Histone acetyltransferase-dependent chromatin remodeling and the vascular clock. J. Biol. Chem. 279, 7091–7097.

    Article  PubMed  CAS  Google Scholar 

  • Dali-Youcef N., Lagouge M., Froelich S., Koehl C., Schoonjans K. and Auwerx J. 2007 Sirtuins: the ‘magnificent seven’, function, metabolism and longevity. Ann. Med. 39, 335–345.

    Article  PubMed  CAS  Google Scholar 

  • Damiola F., Le Minh N., Preitner N., Kornmann B., Fleury-Olela F. and Schibler U. 2000 Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14, 2950–2961.

    Article  PubMed  CAS  Google Scholar 

  • Dasgupta B. and Milbrandt J. 2007 Resveratrol stimulates AMP kinase activity in neurons. Proc. Natl. Acad. Sci. USA 104, 7217–7222.

    Article  PubMed  CAS  Google Scholar 

  • Davidson A. J. and Stephan F. K. 1998 Circadian food anticipation persists in capsaicin deafferented rats. J. Biol. Rhythms 13, 422–429.

    Article  PubMed  CAS  Google Scholar 

  • Davidson A. J., Cappendijk S. L. and Stephan F. K. 2000 Feedingentrained circadian rhythms are attenuated by lesions of the parabrachial region in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R1296–R1304.

    PubMed  CAS  Google Scholar 

  • Davidson A. J., Aragona B. J., Houpt T. A. and Stephan F. K. 2001a Persistence of meal-entrained circadian rhythms following area postrema lesions in the rat. Physiol. Behav. 74, 349–354.

    Article  PubMed  CAS  Google Scholar 

  • Davidson A. J., Aragona B. J., Werner R. M., Schroeder E., Smith J. C. and Stephan F. K. 2001b Food-anticipatory activity persists after olfactory bulb ablation in the rat. Physiol. Behav. 72, 231–235.

    Article  PubMed  CAS  Google Scholar 

  • Davidson A. J., Poole A. S., Yamazaki S. and Menaker M. 2003 Is the food-entrainable circadian oscillator in the digestive system? Genes Brain Behav. 2, 32–39.

    Article  PubMed  CAS  Google Scholar 

  • Desvergne B. and Wahli W. 1999 Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr. Rev. 20, 649–688.

    Article  PubMed  CAS  Google Scholar 

  • Doi M., Hirayama J. and Sassone-Corsi P. 2006 Circadian regulator CLOCK is a histone acetyltransferase. Cell 125, 497–508.

    Article  PubMed  CAS  Google Scholar 

  • Dudley C. A., Erbel-Sieler C., Estill S. J., Reick M., Franken P., Pitts S. and McKnight S. L. 2003 Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science 301, 379–383.

    Article  PubMed  CAS  Google Scholar 

  • Duffield G. E., Best J. D., Meurers B. H., Bittner A., Loros J. J. and Dunlap J. C. 2002 Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557.

    Article  PubMed  CAS  Google Scholar 

  • Duez H. and Staels B. 2008 The nuclear receptors Rev-erbs and RORs integrate circadian rhythms and metabolism. Diab. Vasc. Dis. Res. 5, 82–88.

    Article  PubMed  Google Scholar 

  • Dupré S. M., Burt D. W., Talbot R., Downing A., Mouzaki D., Waddington D. et al. 2008 Identification of melatonin-regulated genes in the ovine pituitary pars tuberalis, a target site for seasonal hormone control. Endocrinol. 149, 5527–5539.

    Article  CAS  Google Scholar 

  • Emery P. and Reppert S. M. 2004 A rhythmic Ror. Neuron 43, 443–446.

    Article  PubMed  CAS  Google Scholar 

  • Etchegaray J. P., Lee C., Wade P. A. and Reppert S. M. 2003 Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421, 177–182.

    Article  PubMed  CAS  Google Scholar 

  • Feillet C. A., Ripperger J. A., Magnone M. C., Dulloo A., Albrecht U. and Challet E. 2006 Lack of food anticipation in Per2 mutant mice. Curr. Biol. 16, 2016–2022.

    Article  PubMed  CAS  Google Scholar 

  • Fontaine C., Dubois G., Duguay Y., Helledie T., Vu-Dac N., Gervois P. et al. 2003 The orphan nuclear receptor Rev-Erbalpha is a peroxisome proliferator-activated receptor (PPAR) gamma target gene and promotes PPARgamma-induced adipocyte differentiation. J. Biol. Chem. 278, 37672–37680.

    Article  PubMed  CAS  Google Scholar 

  • Fulco M., Cen Y., Zhao P., Hoffman E. P., McBurney M. W., Sauve A. A. and Sartorelli V. 2008 Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14, 661–673.

    Article  PubMed  CAS  Google Scholar 

  • Fuller P.M., Lu J. and Saper C. B. 2008 Differential rescue of lightand food-entrainable circadian rhythms. Science 320, 1074–1077.

    Article  PubMed  CAS  Google Scholar 

  • Gallego M. and Virshup D. M. 2007 Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8, 139–148.

    Article  PubMed  CAS  Google Scholar 

  • Gallou-Kabani C., Vige A. and Junien C. 2007 Lifelong circadian and epigenetic drifts in metabolic syndrome. Epigenetics 2, 137–146.

    PubMed  Google Scholar 

  • Gangwisch J. E., Malaspina D., Boden-Albala B. and Heymsfield S. B. 2005 Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep 28, 1289–1296.

    PubMed  Google Scholar 

  • Gervois P., Chopin-Delannoy S., Fadel A., Dubois G., Kosykh V., Fruchart J. C. et al. 1999 Fibrates increase human REV-ERBalpha expression in liver via a novel peroxisome proliferator-activated receptor response element. Mol. Endocrinol. 13, 400–409.

    Article  PubMed  CAS  Google Scholar 

  • Gooley J. J., Schomer A. and Saper C. B. 2006 The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nat. Neurosci. 9, 398–407.

    Article  PubMed  CAS  Google Scholar 

  • Granados-Fuentes D., Prolo L. M., Abraham U. and Herzog E. D. 2004 The suprachiasmatic nucleus entrains, but does not sustain, circadian rhythmicity in the olfactory bulb. J. Neurosci. 24, 615–619.

    Article  PubMed  CAS  Google Scholar 

  • Guo H., Brewer J. M., Lehman M. N. and Bittman E. L. 2006 Suprachiasmatic regulation of circadian rhythms of gene expression in hamster peripheral organs: effects of transplanting the pacemaker. J. Neurosci. 26, 6406–6412.

    Article  PubMed  CAS  Google Scholar 

  • Hirayama J., Sahar S., Grimaldi B., Tamaru T., Takamatsu K., Nakahata Y. and Sassone-Corsi P. 2007 CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 1086–1090.

    Article  PubMed  CAS  Google Scholar 

  • Hirota T., Okano T., Kokame K., Shirotani-Ikejima H., Miyata T. and Fukada Y. 2002 Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 277, 44244–44251.

    Article  PubMed  CAS  Google Scholar 

  • Iijima M., Yamaguchi S., van der Horst G. T., Bonnefont X., Okamura H. and Shibata S. 2005 Altered food-anticipatory activity rhythm in Cryptochrome-deficient mice. Neurosci. Res. 52, 166–173.

    Article  PubMed  CAS  Google Scholar 

  • Inoue I., Shinoda Y., Ikeda M., Hayashi K., Kanazawa K., Nomura M. et al. 2005 CLOCK/BMAL1 is involved in lipid metabolism via transactivation of the peroxisome proliferator-activated receptor (PPAR) response element. J. Atheroscler. Thromb. 12, 169–174.

    PubMed  CAS  Google Scholar 

  • Ishida A., Mutoh T., Ueyama T., Bando H., Masubuchi S., Nakahara D. et al. 2005 Light activates the adrenal gland: timing of gene expression and glucocorticoid release. Cell Metab. 2, 297–307.

    Article  PubMed  CAS  Google Scholar 

  • Kaasik K. and Lee C. C. 2004 Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430, 467–471.

    Article  PubMed  CAS  Google Scholar 

  • Kahn B. B., Alquier T., Carling D. and Hardie D. G. 2005 AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 1, 15–25.

    Article  PubMed  CAS  Google Scholar 

  • Kalsbeek A., Kreier F., Fliers E., Sauerwein H. P., Romijn J. A. and Buijs R. M. 2007 Minireview: Circadian control of metabolism by the suprachiasmatic nuclei. Endocrinol. 148, 5635–5639.

    Article  CAS  Google Scholar 

  • Karlsson B., Knutsson A. and Lindahl B. 2001 Is there an association between shift work and having a metabolic syndrome? Results from a population based study of 27,485 people. Occup. Environ. Med. 58, 747–752.

    Article  PubMed  CAS  Google Scholar 

  • Kersten S., Seydoux J., Peters J. M., Gonzalez F. J., Desvergne B. and Wahli W. 1999 Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103, 1489–1498.

    Article  PubMed  CAS  Google Scholar 

  • Kohsaka A. and Bass J. 2007 A sense of time: how molecular clocks organize metabolism. Trends Endocrinol. Metab. 18, 4–11.

    Article  PubMed  CAS  Google Scholar 

  • Kornmann B., Schaad O., Bujard H., Takahashi J. S. and Schibler U. 2007 System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5, e34.

    Article  PubMed  CAS  Google Scholar 

  • Krieger D. T. 1972 Circadian corticosteroid periodicity: critical period for abolition by neonatal injection of corticosteroid. Science 178, 1205–1207.

    Article  PubMed  CAS  Google Scholar 

  • Kudo T., Kawashima M., Tamagawa T. and Shibata S. 2008 Clock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet. Am. J. Physiol. Endocrinol. Metab. 294, E120–E130.

    Article  PubMed  CAS  Google Scholar 

  • Laitinen S., Fontaine C., Fruchart J. C. and Staels B. 2005 The role of the orphan nuclear receptor Rev-Erb alpha in adipocyte differentiation and function. Biochimie 87, 21–25.

    Article  PubMed  CAS  Google Scholar 

  • Lamia K. A., Storch K. F. and Weitz C. J. 2008 Physiological significance of a peripheral tissue circadian clock. Proc. Natl. Acad. Sci. USA 105, 15172–15177.

    Article  PubMed  CAS  Google Scholar 

  • Lamont E. W., Robinson B., Stewart J. and Amir S. 2005 The central and basolateral nuclei of the amygdala exhibit opposite diurnal rhythms of expression of the clock protein Period2. Proc. Natl. Acad. Sci. USA 102, 4180–4184.

    Article  PubMed  CAS  Google Scholar 

  • Landry G. J. and Mistlberger R. E. 2007 Food entrainment: methodological issues. J. Biol. Rhythms 22, 484–487.

    Article  PubMed  Google Scholar 

  • Landry G. J., Simon M. M., Webb I. C. and Mistlberger R. E. 2006 Persistence of a behavioral food-anticipatory circadian rhythm following dorsomedial hypothalamic ablation in rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R1527–R1534.

    PubMed  CAS  Google Scholar 

  • Landry G. J., Yamakawa G. R., Webb I. C., Mear R. J. and Mistlberger R. E. 2007 The dorsomedial hypothalamic nucleus is not necessary for the expression of circadian food-anticipatory activity in rats. J. Biol. Rhythms 22, 467–478.

    Article  PubMed  Google Scholar 

  • Laposky A. D., Bass J., Kohsaka A. and Turek F.W. 2008 Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Lett. 582, 142–151.

    Article  PubMed  CAS  Google Scholar 

  • Le Minh N., Damiola F., Tronche F., Schutz G. and Schibler U. 2001 Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J. 20, 7128–7136.

    Article  PubMed  Google Scholar 

  • Lemberger T., Saladin R., Vazquez M., Assimacopoulos F., Staels B., Desvergne B. et al. 1996 Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. J. Biol. Chem. 271, 1764–1769.

    Article  PubMed  CAS  Google Scholar 

  • Leone T. C., Lehman J. J., Finck B. N., Schaeffer P. J., Wende A. R., Boudina S. et al. 2005 PGC-1alpha deficiency causes multisystem energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol. 3, e101.

    Article  PubMed  CAS  Google Scholar 

  • Li X., Zhang S., Blander G., Tse J. G., Krieger M. and Guarente L. 2007 SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol. Cell 28, 91–106.

    Article  PubMed  CAS  Google Scholar 

  • Liang H. and Ward W. F. 2006 PGC-1alpha: a key regulator of energy metabolism. Adv. Physiol. Educ. 30, 145–151.

    Article  PubMed  Google Scholar 

  • Lin J., Handschin C. and Spiegelman B. M. 2005a Metabolic control through the PGC-1 family of transcription coactivators. Cell. Metab. 1, 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Lin J., Yang R., Tarr P. T., Wu P. H., Handschin C., Li S. et al. 2005b Hyperlipidemic effects of dietary saturated fats mediated through PGC-1beta coactivation of SREBP. Cell 120, 261–273.

    Article  PubMed  CAS  Google Scholar 

  • Liu C., Li S., Liu T., Borjigin J. and Lin J. D. 2007 Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature 447, 477–481.

    Article  PubMed  CAS  Google Scholar 

  • Loudon A. S., Meng Q. J., Maywood E. S., Bechtold D. A., Boot-Handford R. P. and Hastings M. H. 2007 The biology of the circadian Ck1epsilon tau mutation in mice and Syrian hamsters: a tale of two species. Cold. Spr. Harb. Symp. Quant. Biol. 72, 261–271.

    Article  CAS  Google Scholar 

  • Lowrey P. L. and Takahashi J. S. 2004 Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu. Rev. Genomics Hum. Genet. 5, 407–441.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy J. J., Andrews J. L., McDearmon E. L., Campbell K. S., Barber B. K., Miller B. H. et al. 2007 Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol. Genomics 31, 86–95.

    Article  PubMed  CAS  Google Scholar 

  • McNamara P., Seo S. P., Rudic R. D., Sehgal A., Chakravarti D. and FitzGerald G. A. 2001 Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105, 877–889.

    Article  PubMed  CAS  Google Scholar 

  • Meng Q. J., Logunova L., Maywood E. S., Gallego M., Lebiecki J., Brown T. M. et al. 2008 Setting clock speed in mammals: the CK1 epsilon tau mutation in mice accelerates circadian pacemakers by selectively destabilizing PERIOD proteins. Neuron 58, 78–88.

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Bernstein E. L., Jetton A. E., Matsumoto S. I., Markuns J. F., Lehman M. N. and Bittman E. L. 1999 Effects of suprachiasmatic transplants on circadian rhythms of neuroendocrine function in golden hamsters. Endocrinology 140, 207–218.

    Article  PubMed  CAS  Google Scholar 

  • Michan S. and Sinclair D. 2007 Sirtuins in mammals: insights into their biological function. Biochem. J. 404, 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Mieda M., Williams S. C., Richardson J. A., Tanaka K. and Yanagisawa M. 2006 The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proc. Natl. Acad. Sci. USA 103, 12150–12155.

    Article  PubMed  CAS  Google Scholar 

  • Miller B. H., McDearmon E. L., Panda S., Hayes K. R., Zhang J., Andrews J. L. et al. 2007 Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc. Natl. Acad. Sci. USA 104, 3342–3347.

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger R. E. 1994 Circadian food-anticipatory activity: formal models and physiological mechanisms. Neurosci. Biobehav. Rev. 18, 171–195.

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger R. E. and Marchant E. G. 1995 Computational and entrainment models of circadian food-anticipatory activity: evidence from non-24-hr feeding schedules. Behav. Neurosci. 109, 790–798.

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger R. E. and Mumby D. G. 1992 The limbic system and food-anticipatory circadian rhythms in the rat: ablation and dopamine blocking studies. Behav. Brain. Res. 47, 159–168.

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger R. E. and Rechtschaffen A. 1984 Recovery of anticipatory activity to restricted feeding in rats with ventromedial hypothalamic lesions. Physiol. Behav. 33, 227–235.

    Article  PubMed  CAS  Google Scholar 

  • Mistlberger R. E. and Rusak B. 1988 Food-anticipatory circadian rhythms in rats with paraventricular and lateral hypothalamic ablations. J. Biol. Rhythms. 3, 277–291.

    Article  Google Scholar 

  • Motta M. C., Divecha N., Lemieux M., Kamel C., Chen D., Gu W. et al. 2004 Mammalian SIRT1 represses forkhead transcription factors. Cell 116, 551–563.

    Article  PubMed  CAS  Google Scholar 

  • Nakahata Y., Grimaldi B., Sahar S., Hirayama J. and Sassone-Corsi P. 2007 Signaling to the circadian clock: plasticity by chromatin remodeling. Curr. Opin. Cell Biol. 19, 230–237.

    Article  PubMed  CAS  Google Scholar 

  • Nakahata Y., Kaluzova M., Grimaldi B., Sahar S., Hirayama J., Chen D. et al. 2008 The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134, 329–340.

    Article  PubMed  CAS  Google Scholar 

  • Naruse Y., Oh-hashi K., Iijima N., Naruse M., Yoshioka H. and Tanaka M. 2004 Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol. Cell Biol. 24, 6278–6287.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K., Miyazaki K., Kadota K., Kikuno R., Nagase T., Atsumi G. et al. 2003 Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J. Biol. Chem. 278, 41519–41527.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K., Amagai N., Shirai H., Kadota K., Ohkura N. and Ishida N. 2005a Genome-wide expression analysis reveals 100 adrenal gland-dependent circadian genes in the mouse liver. DNA Res. 12, 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K., Shirai H. and Ishida N. 2005b CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem. J. 386, 575–581.

    Article  PubMed  CAS  Google Scholar 

  • Oishi K., Atsumi G., Sugiyama S., Kodomari I., Kasamatsu M., Machida K. and Ishida N. 2006 Disrupted fat absorption attenuates obesity induced by a high-fat diet in Clock mutant mice. FEBS Lett. 580, 127–130.

    Article  PubMed  CAS  Google Scholar 

  • Panda S., Antoch M. P., Miller B. H., Su A. I., Schook A. B., Straume M. et al. 2002 Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109, 307–320.

    Article  PubMed  CAS  Google Scholar 

  • Pitts S., Perone E. and Silver R. 2003 Food-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R57–R67.

    PubMed  CAS  Google Scholar 

  • Preitner N., Damiola F., Lopez-Molina L., Zakany J., Duboule D., Albrecht U. and Schibler U. 2002 The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110, 251–260.

    Article  PubMed  CAS  Google Scholar 

  • Ralph M. R., Foster R. G., Davis F. C. and Menaker M. 1990 Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975–978.

    Article  PubMed  CAS  Google Scholar 

  • Ramsey K. M., Marcheva B., Kohsaka A. and Bass J. 2007 The clockwork of metabolism. Annu. Rev. Nutr. 27, 219–240.

    Article  PubMed  CAS  Google Scholar 

  • Raspe E., Duez H., Gervois P., Fievet C., Fruchart J. C., Besnard S. et al. 2001 Transcriptional regulation of apolipoprotein CIII gene expression by the orphan nuclear receptor RORalpha. J. Biol. Chem. 276, 2865–2871.

    Article  PubMed  CAS  Google Scholar 

  • Raspe E., Duez H., Mansen A., Fontaine C., Fievet C., Fruchart J. C. et al. 2002a Identification of Rev-erbalpha as a physiological repressor of apoC-III gene transcription. J. Lipid Res. 43, 2172–2179.

    Article  PubMed  CAS  Google Scholar 

  • Raspe E., Mautino G., Duval C., Fontaine C., Duez H., Barbier O. et al. 2002b Transcriptional regulation of human Rev-erbalpha gene expression by the orphan nuclear receptor retinoic acid-related orphan receptor alpha. J. Biol. Chem. 277, 49275–49281.

    Article  PubMed  CAS  Google Scholar 

  • Reick M., Garcia J. A., Dudley C. and McKnight S. L. 2001 NPAS2: an analog of clock operative in the mammalian forebrain. Science 293, 506–509.

    Article  PubMed  CAS  Google Scholar 

  • Reppert S. M. and Weaver D. R. 2002 Coordination of circadian timing in mammals. Nature 418, 935–941.

    Article  PubMed  CAS  Google Scholar 

  • Retnakaran R., Youn B. S., Liu Y., Hanley A. J., Lee N. S., Park J. W. et al. 2008 Correlation of circulating full-length visfatin (PBEF/Nampt) with metabolic parameters in subjects with and without diabetes: a cross-sectional study. Clin. Endocrinol. (Oxf.) (in press).

  • Revollo J. R., Grimm A. A. and Imai S. 2004 The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J. Biol. Chem. 279, 50754–50763.

    Article  PubMed  CAS  Google Scholar 

  • Revollo J. R., Korner A., Mills K. F., Satoh A., Wang T., Garten A. et al. 2007 Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab. 6, 363–375.

    Article  PubMed  CAS  Google Scholar 

  • Ripperger J. A. and Schibler U. 2001 Circadian regulation of gene expression in animals. Curr. Opin. Cell. Biol. 13, 357–362.

    Article  PubMed  CAS  Google Scholar 

  • Ripperger J. A. and Schibler U. 2006 Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38, 369–374.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers R. J., Ishii Y., Halford J. C. and Blundell J. E. 2002 Orexins and appetite regulation. Neuropeptides 36, 303–325.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M. and Puigserver P. 2005 Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434, 113–118.

    Article  PubMed  CAS  Google Scholar 

  • Rodgers J. T., Lerin C., Gerhart-Hines Z. and Puigserver P. 2008 Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett. 582, 46–53.

    Article  PubMed  CAS  Google Scholar 

  • Ruiter M., Buijs R. M. and Kalsbeek A. 2006 Hormones and the autonomic nervous system are involved in suprachiasmatic nucleus modulation of glucose homeostasis. Curr. Diabetes Rev. 2, 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Rutter J., Reick M., Wu L. C. and McKnight S. L. 2001 Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293, 510–514.

    Article  PubMed  CAS  Google Scholar 

  • Rutter J., Reick M. and McKnight S. L. 2002 Metabolism and the control of circadian rhythms. Annu. Rev. Biochem. 71, 307–331.

    Article  PubMed  CAS  Google Scholar 

  • Saper C. B., Cano G. and Scammell T. E. 2005a Homeostatic, circadian, and emotional regulation of sleep. J. Comp. Neurol. 493, 92–98.

    Article  PubMed  CAS  Google Scholar 

  • Saper C. B., Lu J., Chou T. C. and Gooley J. 2005b The hypothalamic integrator for circadian rhythms. Trends Neurosci. 28, 152–157.

    Article  PubMed  CAS  Google Scholar 

  • Sauve A. A., Wolberger C., Schramm V. L. and Boeke J. D. 2006 The biochemistry of sirtuins. Annu. Rev. Biochem. 75, 435–465.

    Article  PubMed  CAS  Google Scholar 

  • Sawaki Y., Nihonmatsu I. and Kawamura H. 1984 Transplantation of the neonatal suprachiasmatic nuclei into rats with complete bilateral suprachiasmatic lesions. Neurosci. Res. 1, 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Schibler U. 2003 Circadian rhythms. Liver regeneration clocks on. Science 302, 234–235.

    Article  PubMed  CAS  Google Scholar 

  • Schibler U., Ripperger J. and Brown S. A. 2003 Peripheral circadian oscillators in mammals: time and food. J. Biol. Rhythms 18, 250–260.

    Article  PubMed  Google Scholar 

  • Shearman L. P., Sriram S., Weaver D. R., Maywood E. S., Chaves I., Zheng B. et al. 2000 Interacting molecular loops in the mammalian circadian clock. Science 288, 1013–1019.

    Article  PubMed  CAS  Google Scholar 

  • Silver R., LeSauter J., Tresco P. A. and Lehman M. N. 1996 A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810–813.

    Article  PubMed  CAS  Google Scholar 

  • Stephan F. K. 2002 The “other” circadian system: food as a Zeitgeber. J. Biol. Rhythms 17, 284–292.

    Article  PubMed  Google Scholar 

  • Stephan F. K. and Zucker I. 1972 Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69, 1583–1586.

    Article  PubMed  CAS  Google Scholar 

  • Stokkan K. A., Yamazaki S., Tei H., Sakaki Y. and Menaker M. 2001 Entrainment of the circadian clock in the liver by feeding. Science 291, 490–493.

    Article  PubMed  CAS  Google Scholar 

  • Storch K. F., Lipan O., Leykin I., Viswanathan N., Davis F. C., Wong W. H. and Weitz C. J. 2002 Extensive and divergent circadian gene expression in liver and heart. Nature 417, 78–83.

    Article  PubMed  CAS  Google Scholar 

  • Sujino M., Masumoto K. H., Yamaguchi S., van der Horst G. T., Okamura H. and Inouye S. T. 2003 Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr. Biol. 13, 664–668.

    Article  PubMed  CAS  Google Scholar 

  • Teboul M., Guillaumond F., Gréchez-Cassiau A. and Delaunay F. 2008 The Nuclear hormone receptors family round the clock. Mol. Endocrinol. (in press).

  • Tu B. P. and McKnight S. L. 2006 Metabolic cycles as an underlying basis of biological oscillations. Nat. Rev. Mol. Cell Biol. 7, 696–701.

    Article  PubMed  CAS  Google Scholar 

  • Turek F. W., Joshu C., Kohsaka A., Lin E., Ivanova G., McDearmon E. et al. 2005 Obesity and metabolic syndrome in circadian Clock mutant mice. Science 308, 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  • Um J. H., Yang S., Yamazaki S., Kang H., Viollet B., Foretz M. and Chung J. H. 2007 Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase I epsilon(CKIepsilon)-dependent degradation of clock protein mPer2. J. Biol. Chem. 282, 20794–20798.

    Article  PubMed  CAS  Google Scholar 

  • Vujovic N., Davidson A. J. and Menaker M. 2008 Sympathetic input modulates, but does not determine, phase of peripheral circadian oscillators. Am. J. Physiol. Regul. Integr. Comp. Physiol. 295, R355–R360.

    PubMed  CAS  Google Scholar 

  • Wakamatsu H., Yoshinobu Y., Aida R., Moriya T., Akiyama M. and Shibata S. 2001 Restricted-feeding-induced anticipatory activity rhythm is associated with a phase-shift of the expression of mPer1 and mPer2 mRNA in the cerebral cortex and hippocampus but not in the suprachiasmatic nucleus of mice. Eur. J. Neurosci. 13, 1190–1196.

    Article  PubMed  CAS  Google Scholar 

  • Walker J. R. and Hogenesch J. B. 2005 RNA profiling in circadian biology. Methods Enzymol. 393, 366–376.

    Article  PubMed  CAS  Google Scholar 

  • Wang J. and Lazar M. A. 2008 Bifunctional role of Rev-erbalpha in adipocyte differentiation. Mol. Cell Biol. 28, 2213–2220.

    Article  PubMed  CAS  Google Scholar 

  • Wang T., Zhang X., Bheda P., Revollo J. R., Imai S. and Wolberger C. 2006 Structure of Nampt/PBEF/visfatin, a mammalian NAD+ biosynthetic enzyme. Nat. Struct. Mol. Biol. 13, 661–662.

    Article  PubMed  CAS  Google Scholar 

  • Wijnen H. and Young M. W. 2006 Interplay of circadian clocks and metabolic rhythms. Annu. Rev. Genet. 40, 409–448.

    Article  PubMed  CAS  Google Scholar 

  • Wolk R. and Somers V. K. 2007 Sleep and the metabolic syndrome. Exp. Physiol. 92, 67–78.

    Article  PubMed  Google Scholar 

  • Yang X., Lamia K. A. and Evans R. M. 2007 Nuclear receptors, metabolism, and the circadian clock. Cold. Spr. Harb. Symp. Quant. Biol. 72, 387–394.

    Article  CAS  Google Scholar 

  • Yang H., Yang T., Baur J. A., Perez E., Matsui T., Carmona J. J. et al. 2007 Nutrient-sensitive mitochondrial NAD+ levels dictate cell survival. Cell 130, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  • Yildiz B. O., Suchard M. A., Wong M. L., McCann S. M. and Licinio J. 2004 Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proc. Natl. Acad. Sci. USA 101, 10434–10439.

    Article  PubMed  CAS  Google Scholar 

  • Yoo S. H., Yamazaki S., Lowrey P. L., Shimomura K., Ko C. H., Buhr E. D. et al. 2004 PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101, 5339–5346.

    Article  PubMed  CAS  Google Scholar 

  • Yoon J. C., Puigserver P., Chen G., Donovan J., Wu Z., Rhee J. et al. 2001 Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413, 131–138.

    Article  PubMed  CAS  Google Scholar 

  • Young M. E. and Bray M. S. 2007 Potential role for peripheral circadian clock dyssynchrony in the pathogenesis of cardiovascular dysfunction. Sleep Med. 8, 656–667.

    Article  PubMed  Google Scholar 

  • Zvonic S., Floyd Z. E., Mynatt R. L. and Gimble J. M. 2007 Circadian rhythms and the regulation of metabolic tissue function and energy homeostasis. Obesity (Silver Spr.) 15, 539–543.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Bechtold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bechtold, D.A. Energy-responsive timekeeping. J Genet 87, 447–458 (2008). https://doi.org/10.1007/s12041-008-0067-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12041-008-0067-6

Keywords

Navigation