Skip to main content
Log in

PGE geochemistry and platinum-group minerals in chromitites from Indus Suture Zone ophiolite, northwest Himalaya, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

Podiform chromitites, a part of Nidar ophiolite complex from the Indus Suture Zone (ISZ), southeast Ladakh, host significant platinum-group elements (PGE) and platinum-group of minerals. These high Cr chromitites are found to be enveloped within the dunite rocks in the form of massive, semi-massive and stringers and as disseminated grains in all the ultramafic rocks. The PGE mineralization in these chromitites exhibits wide ranges (1487–4431 ppb). The Nidar ophiolite chromitites are rich in laurites (RuS2) and IPGE phases. The predominance of laurite phases in these chromitite samples is a distinctive feature of PGE mineralization, indicating their formation with interaction in an S-saturated tholeiitic magma and depleted harzburgites. The predominance of IPGE sulfides specifies a high sulfur fugacity in the melt. The higher content of PGE in the high Cr chromitites of Nidar ophiolite is not only a function of the degree of partial melting, but is related to the interaction between melt and harzburgite during the formation of chromitites.

Research highlights

  • A new set of PGE geochemistry of Nidar ophiolite chromitite is presented

  • Laurite and millerite are common PGM and BMM in the chromitites

  • The higher content of PGE is indicative of high degree of partial melting

  • The PGE mineralization in these chromitites is due to the high sulfur fugacity

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Ahmad T, Tanaka T, Sachan H K, Asahara Y, Islam R and Khanna P P 2008 Geochemical and isotopic constraints on the age and origin of the Nidar Ophiolitic Complex, Ladakh, India: Implications for the Neo-Tethyan subduction along the Indus suture zone; Tectonophys. 451(1–4) 206–224.

    Article  Google Scholar 

  • Ahmed A and Arai S 2002 Unexpectedly high-PGE chromitite from the deeper mantle section of the northern Oman ophiolite and its tectonic implications; Contrib. Mineral. Petrol. 143(3) 263–278.

    Article  Google Scholar 

  • Ahmed A H 2007 Diversity of platinum-group minerals in podiform chromitites of the late Proterozoic ophiolite, Eastern Desert, Egypt: genetic implications; Ore Geol. Rev. 32(1–2) 1–19.

    Article  Google Scholar 

  • Ahmed A H and Arai S 2003 Platinum-group minerals in podiform chromitites of the Oman ophiolite; Can. Mineral. 41(3) 597–616.

    Article  Google Scholar 

  • Aitchison J C, Davis A M, Liu J, Luo H, Malpas J G, McDermid I R, Wu H, Ziabrev S V and Zhou M F 2000 Remnants of a Cretaceous intra-oceanic subduction system within the Yarlung-Zangbo suture (southern Tibet); Earth Planet. Sci. Lett. 183(1–2) 231–244.

    Article  Google Scholar 

  • Akmaz R M, Uysal I and Saka S 2014 Compositional variations of chromite and solid inclusions in ophiolitic chromitites from the southeastern Turkey: Implications for chromitite genesis; Ore Geol. Rev. 58 208–224.

    Article  Google Scholar 

  • Arai S and Matsukage K 1998 Petrology of a chromitite micropod from Hess Deep, equatorial Pacific: A comparison between abyssal and alpine-type podiform chromitites; Lithos 43(1) 1–14.

    Article  Google Scholar 

  • Arai S 1992 Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry; Mineral. Mag. 56 173–184.

    Article  Google Scholar 

  • Arai S 1994 Compositional variation of olivine-chromian spinel in Mg-rich magmas as a guide to their residual spinel peridotites; J. Volcanol. Geotherm. Res. 59(4) 279–293.

    Article  Google Scholar 

  • Arai S 1997 Control of wall-rock composition on the formation of podiform chromitites as a result of magma/peridotite interaction; Shigen-Chishitsu 47(4) 177–187.

    Google Scholar 

  • Augé T 1985 Platinum–group–mineral inclusions in ophiolitic chromitite from the Vourinos Complex, Greece; Can. Mineral. 23(2) 163–171.

    Google Scholar 

  • Augé T 1988 Platinum-group minerals in the Tiebaghi and Vourinos ophilitic complexes: Genetic implications; Can. Mineral. 26(1) 177–192.

    Google Scholar 

  • Balaram V, Mathur R, Banakar V K, Hein J R, Rao C R M, Rao T G and Dasaram B 2006 Determination of the platinum-group elements (PGE) and gold (Au) in manganese nodule reference samples by nickel sulfide fire-assay and Te coprecipitation with ICP-MS; Indian J. Marine Sci. 35(1) 7–16, https://nopr.niscpr.res.in/bitstream/123456789/1500/1/IJMS%2035%281%29%207-16.pdf.

  • Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, Laurenz V and Berndt J 2006 Fractionation of the noble metals by physical processes; Contrib. Mineral. Petrol. 152(6) 667–684.

    Article  Google Scholar 

  • Barnes S J, Naldrett A J and Gorton M P 1985 The origin of the fractionation of platinum-group elements in terrestrial magmas; Chem. Geol. 53(3–4) 303–323.

    Article  Google Scholar 

  • Barnes S J and Roeder P L 2001 The range of spinel compositions in terrestrial mafic and ultramafic rocks; J. Petrol. 42(12) 2279–2302.

    Article  Google Scholar 

  • Bhat I M, Ahmad T and Rao D S 2019 The tectonic evolution of the Dras arc complex along the Indus Suture Zone, western Himalaya: Implications for the Neo-Tethys Ocean geodynamics; J. Geodyn. 124 52–66.

    Article  Google Scholar 

  • Bockrath C, Ballhaus C and Holzheid A 2004 Fractionation of the platinum-group elements during mantle melting; Science 305(5692) 1951–1953.

    Article  Google Scholar 

  • Bowles J F 1986 The development of platinum-group minerals in laterites; Econ. Geol. 81(5) 1278–1285.

    Article  Google Scholar 

  • Brenan J M and Andrews D 2001 High-temperature stability of laurite and Ru–Os–Ir alloy and their role in PGE fractionation in mafic magmas; Can. Mineral. 39(2) 341–360.

    Article  Google Scholar 

  • Brügmann G E, Arndt N T, Hofmann A W and Tobschall H J 1987 Noble metal abundances in komatiite suites from Alexo, Ontario and Gorgona Island, Colombia; Geochim. Cosmochim. Acta 51(8) 2159–2169.

    Article  Google Scholar 

  • Buckman S, Aitchison J C, Nutman A P, Bennett V C, Saktura W M, Walsh J M, Kachovich S and Hidaka H 2018 The Spongtang Massif in Ladakh, NW Himalaya: An Early Cretaceous record of spontaneous, intra-oceanic subduction initiation in the Neotethys; Gondwana Res. 63 226–249.

  • Bussolesi M, Grieco G, Zaccarini F, Cavallo A, Tzamo E and Storni N 2022 Chromite compositional variability and associated PGE enrichments in chromitites from the Gomati and Nea Roda ophiolite, Chalkidiki, Northern Greece; Miner. Deposita 57(8) 1323–1342.

    Article  Google Scholar 

  • Cannat M and Mascle G 1990 Reunion extraordinaire de la Societe Geologique de France en Himalaya du Ladakh (6 aout-1er septembre 1987); Bull. Soc. Géol. France 6(4) 553–582.

    Article  Google Scholar 

  • Corfield R I, Searle M P and Pedersen R B 2001 Tectonic setting, origin, and obduction history of the Spontang Ophiolite, Ladakh Himalaya, NW India; J. Geol. 109(6) 715–736.

    Article  Google Scholar 

  • Das S, Basu A R and Mukherjee B K 2017 In situ peridotitic diamond in Indus ophiolite sourced from hydrocarbon fluids in the mantle transition zone; Geology 45(8) 755–758.

    Google Scholar 

  • Das S, Mukherjee B K, Basu A R and Sen Jr K 2015 Peridotitic minerals of the Nidar Ophiolite in the NW Himalaya: Sourced from the depth of the mantle transition zone and above; Geol. Soc. London, Spec. Publ. 412(1) 271–286.

  • Dick H J and Bullen T 1984 Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas; Contrib. Mineral. Petrol. 86(1) 54–76.

    Article  Google Scholar 

  • Dönmez C, Keskin S, Günay K, Çolakoğlu A O, Çiftçi Y, Uysal İ, Türkel A and Yıldırım N 2014 Chromite and PGE geochemistry of the Elekdağ Ophiolite (Kastamonu, Northern Turkey): Implications for deep magmatic processes in a supra-subduction zone setting; Ore Geol. Rev. 57 216–228.

    Google Scholar 

  • Economou-Eliopoulos M 1996 Platinum-group element distribution in chromite ores from ophiolite complexes: Implications for their exploration; Ore Geol. Rev. 11(6) 363–381.

    Article  Google Scholar 

  • Ferrario A and Garuti G 1990 Platinum-group mineral inclusions in chromitites of the Finero mafic-ultramafic complex (Ivrea-Zone, Italy); Mineral. Petrol. 41 125–143.

    Google Scholar 

  • Finnigan C S, Brenan J M, Mungall J E and McDonough W F 2008 Experiments and models bearing on the role of chromite as a collector of platinum group minerals by local reduction; J. Petrol. 49(9) 1647–1665.

    Article  Google Scholar 

  • Frank W, Gansser A and Trommsdorff V 1977 Geological observations in the Ladakh area (Himalayas), a preliminary report; Schweizer. Mineral. Petrogr. Mitt. 57 89–113.

    Google Scholar 

  • Gansser A 1964 Geology of the Himalayas; Wiley, New York, 289p.

    Google Scholar 

  • Gansser A 1980 The significance of the Himalayan suture zone; Tectonophys. 62(1–2) 37–52.

    Article  Google Scholar 

  • Garuti G and Zaccarini F 1997 In-situ alteration of platinum-group minerals at low temperature: Evidence from serpentinized and weathered chromitite of the Vourinos Complex; Greece; Can. Mineral. 35(3) 611–626.

    Google Scholar 

  • Garuti G, Evgeny E V, Thalhammer O A and Zaccarini F 2012 Overview of chromite mineral chemistry and geo-tectonic setting; Ofioliti 37(1) 27–53.

    Google Scholar 

  • Garuti G, Zaccarini F and Economou-Eliopoulos M 1999 Paragenesis and composition of laurite from chromitites of Othrys (Greece): Implications for Os–Ru fractionation in ophiolitic upper mantle of the Balkan peninsula; Miner. Deposita 34(3) 312–319.

    Article  Google Scholar 

  • Garzanti E, Baud A and Mascle G 1987 Sedimentary record of the northward flight of India and its collision with Eurasia (Ladakh Himalaya, India); Geodin. Acta 1(4–5) 297–312.

    Article  Google Scholar 

  • Gervilla F, Proenza J A, Frei R, Gonzalez-Jimenez J M, Garrido C J, Melgarejo J C, Meibom A, Díaz-Martínez R and Lavaut W 2005 Distribution of platinum-group elements and Os isotopes in chromite ores from Mayarí-Baracoa Ophiolitic Belt (eastern Cuba); Contrib. Mineral. Petrol. 150(6) 589–607.

    Article  Google Scholar 

  • González-Jiménez J M, Gervilla F, Griffin W L, Proenza J A, Augé T, O’Reilly S Y and Pearson N J 2012 Os-isotope variability within sulfides from podiform chromitites; Chem. Geol. 291 224–235.

    Article  Google Scholar 

  • González-Jiménez J M, Gervilla F, Proenza J A, Augé T and Kerestedjian T 2009 Distribution of platinum-group minerals in ophiolitic chromitites; Appl. Earth Sci. 118(3–4) 101–110.

    Article  Google Scholar 

  • González-Jiménez J M, Griffin W L, Gervilla F, Proenza J A, O'Reilly S Y and Pearson N J 2014 Chromitites in ophiolites: How, where, when, why? Part I. A review and new ideas on the origin and significance of platinum-group minerals; Lithos 189 127–139.

  • González-Jiménez J M, Proenza J A, Gervilla F, Melgarejo J C, Blanco-Moreno J A, Ruiz-Sánchez R and Griffin W L 2011 High-Cr and high-Al chromitites from the Sagua de Tánamo district Mayarí-Cristal ophiolitic massif (eastern Cuba): Constraints on their origin from mineralogy and geochemistry of chromian spinel and platinum-group elements; Lithos 125(1–2) 101–121.

    Article  Google Scholar 

  • Grieco G, Bussolesi M, Eslami A, Gentile A, Cavallo A, Lian D, Yang J and Ghaseminejad F 2020 Differential platinum group elements (PGE) re-mobilization at low fS2 in Abdasht and Soghan mafic–ultramafic complexes (Southern Iran); Lithos 366 105523.

    Article  Google Scholar 

  • Grieco G, Diella V, Chaplygina N L and Savelieva G N 2007 Platinum group elements zoning and mineralogy of chromitites from the cumulate sequence of the Nurali massif (Southern Urals, Russia); Ore Geol. Rev. 30(3–4) 257–276.

    Article  Google Scholar 

  • Gueddari K, Piboule M and Amossé J 1996 Differentiation of platinum-group elements (PGE) and of gold during partial melting of peridotites in the lherzolitic massifs of the Betico-Rifean range (Ronda and Beni Bousera); Chem. Geol. 134(1–3) 181–197.

    Article  Google Scholar 

  • Gutierrez-Narbona R, Lorand J P, Gervilla F and Gros M 2003 New data on base metal mineralogy and platinum-group minerals in the Ojen chromitites (Serrania de Ronda, Betic Cordillera, southern Spain); Neues Jahrb. für Mineral. Abhandlungen, pp. 143–173.

  • Hébert R, Bezard R, Guilmette C, Dostal J, Wang C S and Liu Z F 2012 The Indus-Yarlung Zangbo ophiolites from Nanga Parbat to Namche Barwa syntaxes southern Tibet: First synthesis of petrology, geochemistry, and geochronology with incidences on geodynamic reconstructions of Neo-Tethys; Gondwana Res. 22(2) 377–397.

    Article  Google Scholar 

  • Honegger K L F P M G, Le Fort P, Mascle G and Zimmermann J L 1989 The blueschists along the Indus suture zone in Ladakh, NW Himalaya; J. Metamorph. Geol. 7(1) 57–72.

    Article  Google Scholar 

  • Ishii T 1992 Petrological studies of peridotites from diapiric serpentinite seamounts in the Izu–Ogasawara–Mariana forearc, Leg 125; In: Proceedings of the ocean drilling program, scientific results,Vol. 125, pp. 401–414.

  • Kiseleva O N, Airiyants E V, Belyanin D K and Zhmodik S M 2020 Podiform chromitites and PGE mineralization in the Ulan–Sar’dag ophiolite (East Sayan, Russia); Minerals 10(2) 141.

    Article  Google Scholar 

  • Lorand J P, Keays R R and Bodinier J L 1993 Copper and noble metal enrichments across the lithosphere–asthenosphere boundary of mantle diapirs: Evidence from the Lanzo lherzolite massif; J. Petrol. 34(6) 1111–1140.

    Article  Google Scholar 

  • Lorand J-P and Alard O 2001 Platinum-group element abundances in the upper mantle: New constraints from in-situ and whole-rock analyses of massif central xenoliths (France); Geochim. Cosmochim. Acta 65 2789–2806, https://doi.org/10.1016/S0016-7037(01)00627-5.

    Article  Google Scholar 

  • Malitch K N, Melcher F and Mühlhans H 2001 Palladium and gold mineralization in podiform chromitite at Kraubath; Austria; Mineral. Petrol. 73(4) 247–277.

    Article  Google Scholar 

  • Malitch K N, Thalhammer O A, Knauf V V and Melcher F 2003 Diversity of platinum–group mineral assemblages in banded and podiform chromitite from the Kraubath ultramafic massif, Austria: Evidence for an ophiolitic transition zone?; Miner. Deposita 38(3) 282–297.

    Article  Google Scholar 

  • Maurel C and Maurel P 1982 Étude expérimentale de la distribution de l’aluminium entre bain silicaté basique et spinelle chromifère Implications pétrogénétiques: Teneur en chrome des spinelles; Bull. Mineral. 105(2) 197–202.

    Google Scholar 

  • McDermid I R, Aitchison J C, Davis A M, Harrison T M and Grove M 2002 The Zedong terrane: a Late Jurassic intra-oceanic magmatic arc within the Yarlung-Tsangpo suture zone, southeastern Tibet; Chem. Geol. 187(3–4) 267–277.

    Article  Google Scholar 

  • McDonough W F and Sun S S 1995 The composition of the earth; Chem. Geol. 120 223–253, https://doi.org/10.1016/0009-2541(94)00140-4.

    Article  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer T V and Stumpfl E F 1997 Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: A study of solid and fluid inclusions in chromite; J. Petrol. 38(10) 1419–1458.

    Article  Google Scholar 

  • Moores E M, Kellogg L H and Dilek Y 2000 Tethyan ophiolites, mantle convection, and tectonic "historical contingency": A resolution of the ophiolite conundrum; Geol. Soc. Am. Spec. Paper, pp. 3–12.

  • Naldrett T, Kinnaird J, Wilson A and Chunnett G 2008 Concentration of PGE in the Earth’s crust with special reference to the Bushveld Complex; Earth Sci. Front. 15(5) 264–297, https://doi.org/10.1016/S1872-5791(09)60006-3.

    Article  Google Scholar 

  • Nayak R and Maibam B 2020 Petrological study of spinel peridotites of Nidar ophiolite, Ladakh Himalaya, India; J. Earth Syst. Sci. 129(1) 1–15.

    Article  Google Scholar 

  • Nayak R, Pal D and Chinnasamy S S 2021 High-Cr chromitites of the Nidar Ophiolite Complex, northern India: Petrogenesis and tectonic implications; Ore Geol. Rev. 129 103942.

    Article  Google Scholar 

  • O’Driscoll B and González-Jiménez J M 2016 Petrogenesis of the platinum-group minerals; Rev. Mineral. Geochem. 81(1) 489–578.

    Article  Google Scholar 

  • Parkinson I J and Pearce J A 1998 Peridotites from the Izu–Bonin–Mariana forearc (ODP Leg 125): Evidence for mantle melting and melt–mantle interaction in a supra-subduction zone setting; J. Petrol. 39(9) 1577–1618.

    Article  Google Scholar 

  • Pearce J A, Barker P F, Edwards S J, Parkinson I J and Leat P T 2000 Geochemistry and tectonic significance of peridotites from the South Sandwich arc-basin system, south Atlantic; Contrib. Mineral. Petrol. 139(1) 36–53.

    Article  Google Scholar 

  • Prichard H M and Tarkian M 1988 Platinum and palladium minerals from two PGE-rich localities in the Shetland ophiolite complex; Can. Mineral. 26(4) 979–990.

    Google Scholar 

  • Prichard H M, Neary C R and Potts P J 1986 Platinum group minerals in the Shetland ophiolite. In: Conference metallogeny of basic and ultrabasic rocks, pp. 395–414.

  • Prichard H M, Neary C R, Fisher P C and O’hara M J 2008 PGE-rich podiform chromitites in the Al‘Ays ophiolite complex, Saudi Arabia: An example of critical mantle melting to extract and concentrate PGE; Econ. Geol. 103(7) 1507–1529.

    Article  Google Scholar 

  • Proenza J A, Zaccarini F, Escayola M, Cábana C, Schalamuk A and Garuti G 2008 Composition and textures of chromite and platinum–group minerals in chromitites of the western ophiolitic belt from Pampean Ranges of Córdoba, Argentina; Ore Geol. Rev. 33(1) 32–48.

    Article  Google Scholar 

  • Proenza J, Gervilla F, Melgarejo J and Bodinier J L 1999 Al- and Cr-rich chromitites from the Mayari-Baracoa ophiolitic belt (eastern Cuba): Consequence of interaction between volatile-rich melts and peridotites in suprasubduction mantle; Econ. Geol. 94(4) 547–566.

    Article  Google Scholar 

  • Rao D R, Rai H and Kumar J S 2004 Origin of oceanic plagiogranite in the Nidar ophiolitic sequence of eastern Ladakh, India; Curr. Sci. 87(7) 999–1005.

    Google Scholar 

  • Ravikant V, Pal T and Das D 2004 Chromites from the Nidar ophiolite and Karzok complex, Transhimalaya, eastern Ladakh: Their magmatic evolution; J. Asian Earth Sci. 24(2) 177–184.

    Article  Google Scholar 

  • Reuber I 1986 Geometry of accretion and oceanic thrusting of the Spongtang Ophiolite, Ladakh-Himalaya; Nature 321(6070) 592–596.

    Article  Google Scholar 

  • Robertson A and Degnan P 1994 The Dras arc Complex: Lithofacies and reconstruction of a Late Cretaceous oceanic volcanic arc in the Indus Suture Zone, Ladakh Himalaya; Sedim. Geol. 92(1–2) 117–145.

    Article  Google Scholar 

  • Robertson A H F 2000 Formation of melanges in the Indus suture zone, Ladakh Himalaya by successive subduction–related, collisional and post-collisional processes during late Mesozoic–late Tertiary time; Geol. Soc. London, Spec. Publ. 170(1) 333–374.

  • Roeder P L 1994 Chromite: From the fiery rain of chondrules to the Kilauea Iki lava lake; Can. Mineral. 22 729–746.

    Google Scholar 

  • Rowley D B 1996 Age of initiation of collision between India and Asia: A review of stratigraphic data; Earth Planet. Sci. Lett. 145(1–4) 1–13.

    Article  Google Scholar 

  • Satyanarayanan M, Balaram V, Sawant S S, Subramanyam K S V, Krishna G V, Dasaram B and Manikyamba C 2018 Rapid determination of REE, PGE, and other trace elements in geological and environmental materials by high resolution inductively coupled plasma mass spectrometry; Atom. Spectrosc. 39(1) 1–15, http://www.at-spectrosc.com/as/article/pdf/201801001?st=article_issue.

  • Searle M P 1986 Structural evolution and sequence of thrusting in the High Himalayan, Tibetan-Tethys and Indus suture zones of Zanskar and Ladakh, Western Himalaya; J. Struct. Geol. 8(8) 923–936.

    Article  Google Scholar 

  • Searle M P, Windley B F, Coward M P, Cooper D J W, Rex A J, Rex D, Tingdong L, Xuchang X, Jan M Q, Thakur V C and Kumar S 1987 The closing of Tethys and the tectonics of the Himalaya; Geol. Soc. Am. Bull. 98(6) 678–701.

    Article  Google Scholar 

  • Singh A K 2008 PGE distribution in the ultramafic rocks and chromitites of the Manipur Ophiolite Complex Indo-Myanmar Orogenic Belt, northeast India; J. Geol. Soc. India 72 649–660.

    Google Scholar 

  • Sinha A K and Mishra M 1992 Emplacement of the ophiolitic melange along continental collision zone of Indus suture zone in Ladakh Himalaya, India; J. Him. Geol. 3(2) 179–189.

    Google Scholar 

  • Stockman H W and Hlava P F 1984 Platinum-group minerals in alpine chromitites from southwestern Oregon; Econ. Geol. 79(3) 491–508.

    Article  Google Scholar 

  • Tarkian M, Economou-Eliopoulos M and Eliopoulos D G 1992 Platinum-group minerals and tetra-auricupride in ophiolitic rocks of Skyros Island, Greece; Mineral. Petrol. 47(1) 55–66.

    Article  Google Scholar 

  • Tarkian M, Naidenova E and Zhelyaskova-Panayotova M 1991 Platinum-group minerals in chromitites from the Eastern Rhodope ultramafic complex, Bulgaria; Mineral. Petrol. 44(1) 73–87.

    Article  Google Scholar 

  • Thakur V C 1981 Regional framework and geodynamic evolution of the Indus-Tsangpo suture zone in the Ladakh Himalayas; Earth Environ. Sci. Trans. Roy. Soc. Edinburgh 72(2) 89–97.

    Article  Google Scholar 

  • Thakur V C and Misra D K 1984 Tectonic framework of the Indus and Shyok suture zones in eastern Ladakh, northwest Himalaya; Tectonophys. 101(3–4) 207–220.

    Article  Google Scholar 

  • Thalhammer O A R, Prochaska W and Mühlhans H W 1990 Solid inclusions in chrome–spinels and platinum group element concentrations from the Hochgrössen and Kraubath ultramafic massifs (Austria); Contrib. Mineral. Petrol. 105(1) 66–80.

    Article  Google Scholar 

  • Uysal I, Sadiklar M B, Tarkian M, Karsli O R H A N and Aydin F A R U K 2005 Mineralogy and composition of the chromitites and their platinum–group minerals from Ortaca (Muğla–SW Turkey): Evidence for ophiolitic chromitite genesis; Mineral. Petrol. 83(3) 219–242.

    Article  Google Scholar 

  • Uysal İ, Tarkian M, Sadiklar M B and Şen C 2007 Platinum-group element geochemistry and mineralogy of ophiolitic chromitites from the Kop Mountains, northeastern Turkey; Can. Mineral. 45(2) 355–377.

    Article  Google Scholar 

  • Xiong Y and Wood S A 2000 Experimental quantification of hydrothermal solubility of platinum–group elements with special reference to porphyry copper environments; Mineral. Petrol. 68(1) 1–28.

    Article  Google Scholar 

  • Xiong F, Zoheir B, Xu X, Lenaz D and Yang J 2022 Genesis and high-pressure evolution of the Köyceğiz ophiolite (SW Turkey): Mineralogical and geochemical characteristics of podiform chromitites; Ore Geol. Rev. 145 104912.

    Article  Google Scholar 

  • Zaccarini F, Garuti G, Pushkarev E and Thalhammer O 2018 Origin of platinum group minerals (PGM) inclusions in chromite deposits of the Urals; Minerals 8(9) 379, https://doi.org/10.3390/min8090379.

    Article  Google Scholar 

  • Zaccarini F, Pushkarev E and Garuti G 2008 Platinum–group element mineralogy and geochemistry of chromitite of the Kluchevskoy ophiolite complex, central Urals (Russia); Ore Geol. Rev. 33(1) 20–30.

    Article  Google Scholar 

  • Zaccarini F, Pushkarev E V, Fershtater G B and Garuti G 2004 Composition and mineralogy of PGE-rich chromitites in the Nurali lherzolite–gabbro complex, southern Urals, Russia; Can. Mineral. 42(2) 545–562.

    Article  Google Scholar 

  • Zhou M F, Robinson P T, Malpas J and Li Z 1996 Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle; J. Petrol. 37(1) 3–21.

    Article  Google Scholar 

  • Zhou M F, Sun M, Keays R R and Kerrich R W 1998 Controls on platinum–group elemental distributions of podiform chromitites: A case study of high-Cr and high-Al chromitites from Chinese orogenic belts; Geochim. Cosmochim. Acta 62(4) 677–688.

    Article  Google Scholar 

  • Zhou M F and Robinson P T 1997 Origin and tectonic environment of podiform chromite deposits; Econ. Geol. 92(2) 259–262.

    Article  Google Scholar 

Download references

Acknowledgements

RN acknowledges the financial support from the Science Education and Research Board (SERB) and the Department of Science and Technology (DST) Govt. of India as a research grant in DST Fast Track Young Scientist Scheme (Grant No. SR/FTP/Es-60/2014). The author is grateful to Mr Durgesh and Prof Shushanta Sarangi (Dept. Of Applied Geology, IIT (ISM) Dhanbad) for the EPM analyses of the chromitites. We are thankful to the anonymous reviewers of the journal for improving the quality of the manuscript. Finally, we express our gratitude to Prof Somnath Dasgupta for his valuable comments and editorial handling of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Fieldwork, data collection, conceptualization, methodology, validation, writing, representation, analyzing the data and drafting of the manuscript by Ranjit Nayak, data curation, editing and software by Debasis Pal; review and editing by Sakthi S Chinnasamy and Manavalan Satyanarayanan.

Corresponding author

Correspondence to Ranjit Nayak.

Additional information

Communicated by Somnath Dasgupta

Corresponding editor: Somnath Dasgupta

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, R., Pal, D., Chinnasamy, S.S. et al. PGE geochemistry and platinum-group minerals in chromitites from Indus Suture Zone ophiolite, northwest Himalaya, India. J Earth Syst Sci 132, 122 (2023). https://doi.org/10.1007/s12040-023-02135-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-023-02135-9

Keywords

Navigation