Skip to main content
Log in

Global distribution of pauses observed with satellite measurements

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Several studies have been carried out on the tropopause, stratopause, and mesopause (collectively termed as ‘pauses’) independently; however, all the pauses have not been studied together. We present global distribution of altitudes and temperatures of these pauses observed with long-term space borne high-resolution measurements of Global Positioning System (GPS) Radio Occultation (RO) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) aboard Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Here we study the commonality and differences observed in the variability of all the pauses. We also examined how good other datasets will represent these features among (and in between) different satellite measurements, re-analysis, and model data. Hemispheric differences observed in all the pauses are also reported. In addition, we show that asymmetries between northern and southern hemispheres continue up to the mesopause. We analyze inter and intra-seasonal variations and long-term trends of these pauses at different latitudes. Finally, a new reference temperature profile is shown from the ground to 110 km for tropical, mid-latitudes, and polar latitudes for both northern and southern hemispheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Añel J A, Antuña J C, de la Torre L, Castanheira J M and Gimeno L 2008 Climatological features of global multiple tropopause events; J. Geophys. Res. 113 D00B08, doi: 10.1029/2007JD009697.

    Article  Google Scholar 

  • Anthes R A et al. 2008 The COSMIC/FORMOSAT-3 mission: Early results; Bull. Am. Meteor. Soc. 89 1–21.

    Article  Google Scholar 

  • Aumann H H et al. 2003 AIRS/AMSU/HSB on the Aqua Mission: Design, science objectives, data products, and processing systems; IEEE Trans. Geosci. Rem. Sens. 41 2.

    Article  Google Scholar 

  • Beagley S R, de Grandpré J, Koshyk J N, McFarlane N A and Shepherd T G 1997 Radiative-dynamical climatology of the first-generation Canadian middle atmosphere model; Atmos. Ocean 35 293–331.

    Article  Google Scholar 

  • Berger U and von Zhan U 1999 The two-level structure of the mesopause: A model study; J. Geophys. Res. 104 22,083–22,093.

    Article  Google Scholar 

  • Birner T 2010 Recent widening of the tropical belt from global tropopause statistics: Sensitivities; J. Geophys. Res. 115 D23109, doi: 10.1029/2010JD014664.

    Article  Google Scholar 

  • Dee D P and Uppala S 2009 Variational bias correction of satellite radiance data in the ERA-Interim reanalysis; Quart. J. Roy. Meteorol. Soc. 135 1830–1841.

    Article  Google Scholar 

  • García-Comas M et al. 2008 Errors in Sounding of the Atmosphere using Broad band Emission Radiometry (SABER) kinetic temperature caused by non-local thermodynamic-equilibrium model parameters; J. Geophys. Res. 113 D24106, doi: 10.1029/2008JD010105.

    Article  Google Scholar 

  • Gettelman A, Hoor P, Pan L L, Randel W J, Hegglin M I and Birner T 2011 The extra tropical upper troposphere and lower stratosphere; Rev. Geophys. 49 RG3003, doi: 10.1029/2011RG000355.

    Article  Google Scholar 

  • Gille J et al. 2008 High Resolution Dynamics Limb Sounder: Experiment overview, recovery, and validation of initial temperature data; J. Geophys. Res. 113 D16S43, doi: 10.1029/2007JD008824.

    Article  Google Scholar 

  • Hitchman M H and Leovy C B 1986 Evolution of the zonal mean state in the equatorial middle atmosphere during October 1978–May 1979; J. Atmos. Sci. 43 3159–3176.

    Article  Google Scholar 

  • Hitchman M H, Gille J C, Rodgers C D and Brasseur G 1989 The separated polar winter stratopause: A gravity wave driven climatological feature; J. Atmos. Sci. 46 410–422.

    Article  Google Scholar 

  • Hoinka K P 1998 Statistics of the global tropopause pressure; Mon. Weather. Rev. 126 3303–3325.

    Article  Google Scholar 

  • Jiang J H et al. 2004 Comparison of GPS/SAC-C and MIPAS/ENVISAT temperature profiles and its possible implementation for EOS MLS observations, in CHAMP mission results for gravity and magnetic field mapping, and GPS atmospheric sounding; (Berlin/Heidelberg/New York: Springer), pp. 573–578.

    Google Scholar 

  • Kiladis G N, Straub K H, Reid G C and Gage K S 2001 Aspects of interannual and intraseasonal variability of the tropopause and lower stratosphere; Quart. J. Roy. Meteorol. Soc. 127 1961–1983.

    Google Scholar 

  • Kishore Kumar G, Venkat Ratnam M, Patra A K, Vijaya Bhaskara Rao S and Russell J 2008 Mean thermal structure of the low-latitude middle atmosphere studied using Gadanki Rayleigh lidar, Rocket, and SABER/TIMED observations; J. Geophys. Res. 113 D23106, doi: 10.1029/2008JD010511.

    Article  Google Scholar 

  • Kursinski E R, Hajj G A, Schofield J T, Linfield R P and Hardy K R 1997 Observing the Earth’s atmosphere with radio occultation measurements using the Global Positioning System; J. Geophys. Res. 102 23,429–23,465.

    Google Scholar 

  • Labitzke K, Barnett J J and Edwards B (eds) 1985 Middle Atmosphere Program; MAP Handbook, 16. University of Illinois, Urbana.

  • Lorenc A C, Ballard S P, Bell R S, Ingleby N B, Andrews P L F, Barker D M, Bray J R, Clayton A M, Dalby T, Li D, Payne T J and Saunders F W 2000 The Met. Office global three-dimensional variational data assimilation scheme; Quart. J. Roy. Meteorol. Soc. 126(570) 2991–3012.

    Article  Google Scholar 

  • Manney G L, Schwartz M J, Kruger K, Santee M L, Pawson S, Lee J N, Daffer W L, Fuller R A and Livesey N J 2009 Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming; Geophys. Res. Lett. 36 L12815, doi: 10.1029/2009GL038585.

    Article  Google Scholar 

  • Mertens C J, Mlynczak M G, Lopez-Puertas M, Wintersteiner P P, Picard R H, Winick J R, Gordley L L and Russell III J M 2001 Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15-μm Earth limb emission under non-LTE conditions; Geophys. Res. Lett. 28 1391–1394.

    Article  Google Scholar 

  • Onogi K et al. 2007 The JRA-25 Reanalysis; J. Meteor. Soc. Japan 85 369–432.

    Article  Google Scholar 

  • Randel W J, Wu F and Gaffen D 2000 Interannual variability of the tropical tropopause derived from radiosonde and NCEP reanalysis; J. Geophys. Res. 105 15,509–15,523.

    Article  Google Scholar 

  • Ratnam M V, Shen C M, Chen W N and Nee J B 2004 Study on oxygen atmospheric band dayglow: Global and seasonal variations deduced from high-resolution Doppler imager observations; J. Atmos. Sol. Terr. Phys. 66 209–218.

    Article  Google Scholar 

  • Ratnam M V, Tsuda T, Shiotani M and Fujiwara M 2005 New characteristics of the tropical tropopause revealed by CHAMP/GPS measurements; SOLA 1 185–188, doi: 10.2151/sola.2005-048.

    Article  Google Scholar 

  • Ratnam M V, Tsuda T, Mori S and Kozu T 2006 Modulation of tropopause temperature structure revealed by simultaneous radiosonde and CHAMP GPS measurements; J. Meteor. Soc. Japan 84 989–1003.

    Article  Google Scholar 

  • Ratnam M V, Patra A K and Krishna Murthy B V 2010 Tropical mesopause: Is it always close to 100 km?; J. Geophys. Res. 115 D06106, doi: 10.1029/2009JD012531.

    Article  Google Scholar 

  • Santer B D, Sausen R, Wigley T M L, Boyle J S, Achuta R K, Doutriaux C, Hansen J E, Geehl G A, Roeckner E, Ruedy R, Schmidt G and Taylor K E 2003 Behavior of tropopause altitude and atmospheric temperature in models, reanalysis, and observations: Decadal changes; J. Geophys. Res. 108(D1) 4002, doi: 10.1029/2002JD002258.

    Article  Google Scholar 

  • Schmidt T, Wickert J, Beyerle G and Reigber C 2004 Tropical tropopause parameters derived from GPS radio occultation measurements with CHAMP; J. Geophys. Res. 109 D13105, doi: 10.1029/2004JD004566.

    Article  Google Scholar 

  • Schmidt T, Wickert J, Beyerle G and Heise S 2008 Global tropopause height trends estimated from GPS radio occultation data; Geophys. Res. Lett. 35 L11806, doi: 10.1029/2008GL034012.

    Article  Google Scholar 

  • She C Y, David A Krueger, Rashid Akmaev, Hauke Schmidt, Elsayed Talaat and Sam Yee 2009 Long-term variability in mesopause region temperatures over Fort Collins, Colorado (41°N, 105°W) based on lidar observations from1990 through 2007; J. Atmos. Sol. Terr. Phys. 71 1558–1564.

    Article  Google Scholar 

  • Sivakumar V, Bencherif H, Hauchecorne A, Keckhut P, Rao D N, Sharma S, Chandra H, Jayaraman A and Rao P B 2006 Rayleigh lidar observations of double stratopause structure over three different northern hemisphere stations; Atmos. Chem. Phys. Discuss. 6 6933–6956, doi: 10.5194/acpd-6-6933-2006.

    Article  Google Scholar 

  • Son S W, Tandon N F and Polvani L M 2011 The fine-scale structure of the global tropopause derived from COSMIC GPS radio occultation measurement; J. Geophys. Res. 116 D20113, doi: 10.1029/2011JD016030.

    Article  Google Scholar 

  • Tomikawa Y, Sato K, Watanabe S, Kawatani Y, Miyazaki K and Takahashi M 2008 Wintertime temperature maximum at the subtropical stratopause in a T213L256 GCM; J. Geophys. Res. 113 D17117, doi: 10.1029/2008JD009786.

    Article  Google Scholar 

  • von Zahn U, Hoffner J, Eska V and Alpers M 1996 The mesopause altitude: Only two distinctive levels worldwide? Geophys. Res. Lett. 23 3231–3234.

    Article  Google Scholar 

  • Waters J W et al. 2006 The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura Satellite; IEEE Trans. Geosci. Rem. Sens. 44 5.

    Article  Google Scholar 

  • Wickert J, Reigber C, Beyerle G, König R, Marquardt C, Schmidt T, Grunwaldt L, Galas R, Meehan T K, Melbourne W G and Hocke K 2001 Atmosphere sounding by GPS radio occultation: First results from CHAMP; Geophys. Res. Lett. 28 3263–3266.

    Article  Google Scholar 

  • World Meteorological Organization (WMO), Definition of the tropopause 1957; WMO Bull. 6, Geneva, Switzerland.

Download references

Acknowledgements

The authors would like to thank UCAR and SABER team for providing the dataset through their ftp sites. They also thank all other data sources for providing data through their ftp sites. They are grateful to Prof. B V Krishna Murthy for helping them in improving the paper by fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M VENKAT RATNAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

RATNAM, M.V., KISHORE, P. & VELICOGNA, I. Global distribution of pauses observed with satellite measurements. J Earth Syst Sci 122, 515–529 (2013). https://doi.org/10.1007/s12040-013-0278-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-013-0278-y

Keywords

Navigation