Skip to main content

Advertisement

Log in

Atmospheric water budget over the western Himalayas in a regional climate model

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

During winter months (December, January, February – DJF), the western Himalayas (WH) receive precipitation from eastward moving extratropical cyclones, called western disturbances (WDs) in Indian parlance. Winter precipitation–moisture convergence–evaporation (P–C–E) cycle is analyzed for a period of 22 years (1981–2002: 1980(D)–1981(J, F) to 2001(D)–2002(J, F)) with observed and modelled (RegCM3) climatological estimates over WH. Remarkable model skills have been observed in depicting the hydrological cycle over WH. Although precipitation biases exist, similar spatial precipitation with well marked two maxima is simulated by the model. As season advances, temporal distribution shows higher precipitation in simulation than the observed. However, P–C–E cycle shows similar peaks of moisture convergence and evaporation in daily climatologies though with varying maxima/minima. In the first half of winter, evaporation over WH is mainly driven by ground surface and 2 m air temperature. Lowest temperatures during mid-winter correspond to lowest evaporation to precipitation ratio as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Anders A M, Roe G H, Hallet B, Montgomery D R, Finnegan N J and Putkonen J 2006 Spatial patterns of precipitation and topography in the Himalayas, In: Tectonics, Climate, and Landscape Evolution (eds) Willett S D, Hovius N, Brandon M T and Fisher D M, Geol. Soc. Am. Spec. Paper 398, Penrose Conference Series, pp. 39–53.

  • Barros A P and Lettenmaier D P 1994 Dynamic modeling of orographically induced precipitation; Rev. Geophys. 32 265–284.

    Article  Google Scholar 

  • Bookhagen B and Burbank D W 2006 Topography, relief and TRMM-derived rainfall variation along the Himalaya; Geophys. Res. Lett. 33 1–5.

    Google Scholar 

  • Bookhagen B and Strecker M R 2008 Orographic barriers, high resolution TRMM rainfall, and relief variations along the eastern Andes; Geophys. Res. Lett. 35 1–6.

    Article  Google Scholar 

  • Bookhagen B, Thiede R C and Strecker M R 2005 Abnormal monsoon years and their control on erosion and sediment flux in high, arid northwest Himalaya; Earth Planet. Sci. Lett. 231 131–146.

    Article  Google Scholar 

  • Burbank D W, Blythe A E, Putkonen J, Pratt-Sitaula B, Gabet E, Oskin M, Barros A and Ojha T P 2003 Decoupling of erosion and precipitation in the Himalayas; Nature 426 652–655.

    Article  Google Scholar 

  • Cosgrove B A and Co-authors 2003 Land surface model spin up in the North American land data assimilation system (NLDAS); J. Geophys. Res. 108(8845) 19p.

    Google Scholar 

  • Dickinson R E, Henderson-Sellers A and Kennedy P J 1993 Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the NCAR Community Climate Model, NCAR Tech. Note NCAR/TN-387+STR, 72p.

  • Dimri A P 2004 Impact of horizontal model resolution and orography on the simulation of a western disturbance and its associated precipitation; Meteorol. Appl. 11 115–127.

    Article  Google Scholar 

  • Dimri A P 2009 Impact of subgrid scale scheme on topography and landuse for better regional scale simulation of meteorological variables over the Western Himalayas; Clim. Dyn. 32 565–574.

    Article  Google Scholar 

  • Dimri A P 2012 Wintertime land surface characteristics in climatic simulations over the western Himalayas; J. Earth Syst. Sci. 121(2) 329–344.

    Google Scholar 

  • Dimri A P and Dash S K 2011 Wintertime climatic trends in the western Himalayas; Clim. Change 111(3–4) 775–800, doi: 10.1007/s10584–011–0201-y.

    Google Scholar 

  • Dimri A P and Mohanty U C 2009 Simulation of mesoscale features associated with intense western disturbances over western Himalayas; Meteorol. Appl. 16 289–308.

    Article  Google Scholar 

  • Elguindi N S, Somot M Deque and Ludwig W 2009 Climate change evolution of the hydrological balance of the Mediterranean, Black and Caspian Seas: Impact of climate model resolution; Clim. Dyn. 36 205–228.

    Article  Google Scholar 

  • Eltahir E A B and Bras R L 1996 Precipitation recycling; Rev. Geophys. 34 367–378.

    Article  Google Scholar 

  • Fairman J G Jr, Nair U S, Christopher S A and Molg T 2011 Land use change impacts on regional climate over Kilimanjaro; J. Geophys. Res. 116, doi: 10.1029/2010JD014712.

  • Giorgi F and Mearns L O 1999 Introduction to special section: Regional climate modeling revisited; J. Geophys. Res. 104 6335–6352.

    Article  Google Scholar 

  • Graversen R G, Kallen E, Tjernstrom M and Kornich H 2007 Atmospheric mass-transport inconsistencies in ERA-40 analysis; Quart. J. Roy. Meteor. Soc. 133 673–680.

    Article  Google Scholar 

  • Grell G A 1993 Prognostic evaluation of assumptions used by cumulus parameterization; Mon. Weather Rev. 121 764–787.

    Article  Google Scholar 

  • Hagemann S, Arpe K and Bengtsson L 2005 Validation of the hydrological cycle of ERA-40, ERA-40 Project Report Series, 24, 42p.

  • Holtslag A A M, de Bruijn E I F and Pan H L 1999 A high resolution air mass transformation model for short-range weather forecasting; Mon. Weather Rev. 118 1561–1575.

    Article  Google Scholar 

  • Kanamitsu M, Ebisuzaki W, Woolen J, Yang S-K, Hnilo J J, Fiorino M and Potter G L 2002 NCEP-DOE AMIP-II reanalysis (R-2); Bull. Am. Meteor. Soc. 83 1631–1643.

    Article  Google Scholar 

  • Kantha L H and Clayson C A 2000 Numerical models of oceans and oceanic processes; Acedemic Press, 940p.

  • Kiehl J T, Hack J J, Bonn G B, Boville B A, Briegleb B P, Williamson D L and Rasch P J 1996 Description of the NCAR Community Climate Model (CCM3), NCAR Tech. Note NCAR/TN-420+STR, 152p.

  • Lang T J and Barros A P 2004 Winter storms in the central Himalayas; J. Meteor. Soc. Japan 82 829–844.

    Article  Google Scholar 

  • Lean J and Warrilow D A 1989 Simulation of the regional climatic impact of Amazon deforestation; Nature 342 411–413.

    Article  Google Scholar 

  • Medina S, Houze R A Jr, Kumar A and Niyogi D 2010 Summer monsoon convection in the himalayan region: Terrain and land cover effects; Quart. J. Roy. Meteor. Soc. 136 593–616.

    Google Scholar 

  • Mohanty U C, Madan O P, Rao P L S and Raju P V S 1998 Meteorological fields associated with western disturbances in relation to glacier basins of western Himalayas during winter season; Center for Atmospheric Sciences, Indian Institute of Technology, New Delhi, Technical Report.

  • Nair U S, Wu Y, Kala J, Lyons T J, Pielke R A Sr and Hacker J M 2011 The role of landuse change on the development and evolution of the west coast trough, convective clouds, and precipitation in southwest Australia; J. Geophys. Res. 116, doi: 10.1029/2010JD014950.

  • Oki T, Musiake K, Matsuyama H and Masuda K 1995 Global atmospheric water balance and run off from large river basins; Hydrol. Processes 9 655–678.

    Article  Google Scholar 

  • Omstedt A, Meuller L and Nyberg L 1997 Interanual, seasonal and regional variations of precipitation and evaporation over Baltic Sea; Ambio 26 484–492.

    Google Scholar 

  • Onogi K, Tsusui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kodokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N and Taira R 2007 The JTA-25 reanalysis; J. Meteor. Soc. Japan 85 369–432.

    Article  Google Scholar 

  • Pal J S and Eltahir E A B 2003 A feedback mechanism between soil moisture distribution and storm tracks; Quart. J. Roy. Meteor. Soc. 129 2279–2297.

    Article  Google Scholar 

  • Pal J S and Coauthors 2007 The ICTP RegCM3 and RegCNET: Regional climate modeling for the developing world; Bull. Am. Meteor. Soc. 88 1395–1409.

    Article  Google Scholar 

  • Pal J S, Small E E and Eltahir E A B 2000 Simulation of regional-scale water and energy budgets: Representation of subgrid cloud and precipitation processes within RegCM; J. Geophys. Res. 105 29,576–29,594.

    Article  Google Scholar 

  • Peixoto J P and Oort A H 1992 Physics of Climate; Am. Inst. Phys., 520p.

  • Pielke R A Sr 2001 Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall; Rev. Geophys. 39 151–177.

    Article  Google Scholar 

  • Prasanna V and Yasunari T 2009 Time-space characteristics of seasonal and interannual variations of atmospheric water balance over south Asia; J. Meteor. Soc. Japan 87 263–287.

    Article  Google Scholar 

  • Prasanna V and Yasunari T 2010 Simulated changes in the atmospheric water balance over south Asia in the eight IPCC AR4 coupled climate models; Theor. Appl. Climatol. 104 139–158, doi: 10.1007/s00704–010–0331–6.

    Article  Google Scholar 

  • Rasmusson E M 1967 Atmospheric water vapor transport and the water balance of north America: Part I. Characteristics of the water vapor flux field; Mon. Weather Rev. 95 403–426.

    Article  Google Scholar 

  • Rasmusson E M 1968 Atmospheric water vapor transport and the water balance of north America: Part II. Large scale water balance investigations; Mon. Weather Rev. 96 720–734.

    Article  Google Scholar 

  • Risi C, Bony S and Vimeux F 2008 Influence of convective processes on the isotopic composition of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect; J. Geophys. Res. 113, doi: 10.1029/2008JD009943.

  • Risi C, Bony S, Vimeux F, Frankenberg C, Noone D and Worden J 2010 Understanding the Sahelian water budget through the isotopic composition of water vapor and precipitation; J. Geophys. Res. 115, doi: 10.1029/2010JD024690.

  • Singh P, Ramasastri K S and Kumar N 1995 Topographical influence on precipitation distribution in different ranges of western Himalayas; Nord. Hydrol. 26 259–284.

    Google Scholar 

  • Thayyen R J and Gergan J T 2010 Role of glaciers in watershed hydrology: A preliminary study of a ‘Himalayan Catchment’; The Cryosphere 4 115–128.

    Article  Google Scholar 

  • Trenberth K E and C J Guillemot 1999 Evaluation of the atmospheric moisture and hydrological cycle in the JRA-25 reanalyses; Clim. Dyn. 14 213–231.

    Article  Google Scholar 

  • Trenberth K E, Fasullo J, Smith L 2005 Trends and variability in column integrated water vapor; Clim. Dyn. 24 741–758.

    Article  Google Scholar 

  • Twafik A B and Steiner A L 2010 The role of soil ice in land atmosphere coupling over the United States: A soil moisture–precipitation winter feedback mechanism; J. Geophys. Res. 116, doi: 10.1029/2010JD014333.

    Google Scholar 

  • Xu J, Yu S, Liu J, Haginoya S, Ishigooka Y, Kuwagata T, Hara M and Yasunari T 2009 The implication of heat and water balance changes in a lake basin on the Tibetan Plateau; Hydrol. Res. Lett. 3 1–5.

    Article  Google Scholar 

  • Yang D, Kane D L, Hinzman L D, Zhang X, Zhang T and Ye H 2002 Siberian Lena river hydrologic regime and recent change; J. Geophys. Res. 107, doi: 10.1029/2002JD002542.

  • Yasunari T 1976 Seasonal weather variations in Khumbu Himal; Seppyo 38 74–83.

    Google Scholar 

  • Yatagai A, Arakawa O, Kamiguchi K and Kawamoto H 2009 A 44-year daily gridded precipitation dataset for Asia based on a dense network of rain gauges; SOLA 5 137–140.

    Article  Google Scholar 

  • Zhang J, Wu L and Dong W 2011 Land atmosphere coupling and summer climate variability over east Asia; J. Geophys. Res. 116, doi: 10.1029/2010JD014714.

Download references

Acknowledgements

The author acknowledges the ESP, ICTP, Italy; CRU, UK; NCEP/NCAR, US and SASE, Chandigarh, India for using their data sources. Author thanks Dr D Niyogi and three anonymous reviewers for their comments in preparing the manuscript. Author also acknowledges Ms R Bangia for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A P DIMRI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DIMRI, A.P. Atmospheric water budget over the western Himalayas in a regional climate model. J Earth Syst Sci 121, 963–973 (2012). https://doi.org/10.1007/s12040-012-0204-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-012-0204-8

Keywords

Navigation