Skip to main content
Log in

Nature of light rain during presence and absence of bright band

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

This paper reports the evolution of rain drop size distribution (DSD) during bright band (BB) and no-BB (NBB) conditions of low intensity rainfall events as observed by a vertically pointing Micro Rain Radar (MRR) over Pune (18.58°N, 73.92°E), India. The BB is identified by enhanced radar reflectivity factor Z (dBZ) at the 0°C isotherm. The gradient of hydrometeor fall velocity is found to be a good indicator in identifying the melting layer when enhanced radar reflectivity at melting layer is not prominent. The storm structures as observed by the MRR are compared with CloudSat observations that provide evidence of ice hydrometeor at ~ −60°C with clear indication of BB at 0°C. Storm heights at warmer than 0°C are evident during NBB conditions from CloudSat. This suggests that warm rain processes are responsible for producing rain during NBB conditions. During BB conditions, bimodal DSDs below the melting layer are observed at lower altitudes. The DSDs of shallow warm precipitating systems of NBB conditions are monomodal at all the altitudes. Significantly, normalized DSDs are found to be bimodal for BB conditions, and monomodal for NBB conditions which confirm different dominant microphysical processes. It is found that the observed bimodal DSDs during BB conditions are mainly due to the collision, coalescence and break-up processes. During NBB conditions, number and size of large raindrops grow while reaching the ground without much breakup. The radar reflectivity and rainfall intensity R (mmh − 1) relationship of the form Z = aR b are found out for BB and NBB conditions. Existing different microphysical processes lead to large coefficient in the Z–R relationship with small exponent during BB conditions while during NBB conditions the coefficients are small with large exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  • Austin P M and Bemis A C 1950 A quantitative study of the ‘bright band’ in radar precipitation Echoes; J. Meteor. 7 145–151.

    Article  Google Scholar 

  • Atlas D, Ulbrich C W, Marks F D Jr, Amitai E and Williams C R 1999 Systematic variation of drop size and radar-rainfall relations; J. Geophys. Res. 104 6155–6169.

    Article  Google Scholar 

  • Atlas D and Ulbrich C W 2000 An observationally based conceptual model of warm oceanic convective rain in the tropics; J. Appl. Meteorol. 39 2165–2181.

    Article  Google Scholar 

  • Atlas D and Williams C R 2003 The anatomy of a continental tropical convective storm; J. Atmos. Sci. 60 3–15.

    Article  Google Scholar 

  • Battan L J 1973 Radar observations of the atmosphere, The University of Chicago Press, Chicago.

    Google Scholar 

  • Cifelli R and Rutledge S A 1994 Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50-MHz profiler; J. Atmos. Sci. 51 2631–2652.

    Article  Google Scholar 

  • Fabry F and Zawadzki I 1995 Long-term radar observations of the melting layer of precipitation and their interpretation; J. Atmos. Sci. 52 838–851.

    Article  Google Scholar 

  • Glickman T S 2000 Glossary of Meteorology, 2nd edn, Amer. Meteor. Soc., 855p.

  • Gray W R, Cluckie I D and Griffith R J 2001 Aspects of melting and the radar bright band; Meteorol. Appl. 8 371–379.

    Article  Google Scholar 

  • Houze R A Jr 1993 Cloud Dynamics, Academic Press, 573p.

  • Houze R A Jr 1997 Stratiform precipitation in regions of convection: A meteorological paradox?; Bull. Am. Meteor. Soc. 78 2179–2196.

    Article  Google Scholar 

  • Huggel A W, Schmid W and Waldvogel A 1996 Rain drop size distribution and radar bright band; J. Appl. Meteorol. 35 1688–1701.

    Article  Google Scholar 

  • Jameson A R and Kostinski A B 2000 Fluctuation properties of precipitation. Part VI: Observations of hyperfine clustering and drop size distribution structures in three-dimensional rain; J. Atmos. Sci. 57 373–388.

    Article  Google Scholar 

  • Kingsmill D E, Neiman P J, Ralph F M and White A B 2006 Synoptic and topographic variability of northern California precipitation characteristics in landfalling winter storms observed during CALJET; Mon. Weather Rev. 134 2072–2094.

    Article  Google Scholar 

  • Kirankumar N V P, Rao T N, Radhakrishna B and Rao D N 2008 Statistical characteristics of raindrop size distribution in southwest monsoon season; J. Appl. Meteorol. Clim. 47 576–590.

    Article  Google Scholar 

  • Klaassen W 1988 Radar observations and simulation of the melting layer of precipitation; J. Atmos. Sci. 45 3741–3753.

    Article  Google Scholar 

  • Konwar M, Sarma D K, Sharma S and Das J 2006 Shape of the raindrop size distributions and classification of rain type at Gadanki; Indian J. Radio Space Phys. 35 360–367.

    Google Scholar 

  • Kunz M 1998 Niederschlagsmessungen mit einem vertikal ausgerichteten K-Band FM-CW-Dopplerradar. Diplomarbeit (Diploma thesis), Institut für Meteorologie und Klimaforschung, Universität Karlsruhe, 95p.

  • Lhermitte R M and Atlas D 1963 Doppler fall speed and particle growth in stratiform precipitation; Proc. 10th Wea. Radar Conf., Amer. Meteor. Soc., pp. 297–302.

  • List R 1988 A linear radar reflectivity–rainrate relationship for steady tropical rain; J. Atmos. Sci. 45 3564–3572.

    Article  Google Scholar 

  • Löffler-Mang M, Kunz M and Schmid W 1999 On the performance of a low-cost K-band doppler radar for quantitative rain measurement; J. Atmos. Ocean. Tech. 16 379–387.

    Article  Google Scholar 

  • Löffler-Mang M and Joss J 2000 An optical disdrometer for measuring size and velocity of hydrometeors; J. Atmos. Ocean. Tech. 17 130–139.

    Article  Google Scholar 

  • Maki M, Keenan T D, Sasaki Y and Nakamura K 2001 Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia; J. Appl. Meteorol. 40 1393–1412.

    Article  Google Scholar 

  • Marshall J S and Palmer W M 1948 The distribution of raindrops with size; J. Meteor. 5 165–166.

    Article  Google Scholar 

  • Martner B E, Yuter S E, White A B, Matrosov S Y, Kingsmill D E and Ralph F M 2008 Raindrop size distributions and rain characteristics in California coastal rainfall for periods with and without a radar bright band; J. Hydrometeor. 9 408–425.

    Article  Google Scholar 

  • Nemeth K and Löffler-Mang M 2006 OTT-parsivel–enhanced precipitation identifier and new generation of present weather sensor, 4th ICEAWS Conference, Lisboa, 8p.

  • Peters G, Fischer B and Andersson T 2002 Radio observations with a vertically looking Micro Rain Radar (MRR); Boreal Env. Res. 7 353–362.

    Google Scholar 

  • Peters G, Fischer B, Münster H, Clemens M and Wagner A 2005 Profiles of raindrop size distributions by micro rain radars; J. Appl. Meteorol. 44 1930–1949.

    Article  Google Scholar 

  • Peters G, Fischer B and Clemens M 2010 Rain attenuation of radar echoes considering finite-range resolution and using drop size distributions; J. Atmos. Oceanic Technol. 27 829–842.

    Article  Google Scholar 

  • Rao T N, Rao D N and Raghavan S 1999 Tropical precipitating system observed with Indian MST Radar; Radio Sci. 34 1125–1139.

    Article  Google Scholar 

  • Rao T N, Rao D N, Mohan K and Raghavan S 2001 Classification of tropical precipitating systems and associated Z–R relationships; J. Geophys. Res. 106 17,699–17,711.

    Article  Google Scholar 

  • Rogers R R, Zawadzki I and Gossard E E 1991 Variation with altitude of the drop-size distribution in steady light rain; Quart. J. Roy. Meteor. Soc. 117 1341–1369.

    Article  Google Scholar 

  • Sasi Kumar V, Sampath S, Vinayak P V S S K and Harikumar R 2007 Rainfall intensity characteristics at coastal and high altitude stations in Kerala; J. Earth Syst. Sci. 116(5) 451–463.

    Article  Google Scholar 

  • Sharma S, Konwar M, Sarma D K, Kalapureddy M C R and Jain A R 2009 Characteristics of rain integral parameters during tropical convective, transition and stratiform rain at Gadanki and its application in rain retrieval; J. Appl. Meteorol. Clim. 48 1245–1266.

    Article  Google Scholar 

  • Steiner M and Smith J A 1998 Convective versus stratiform rainfall: An ice-microphysical and kinematic conceptual model; Atmos. Res. 47–48 317–326.

    Article  Google Scholar 

  • Steiner M, Smith J A and Uijlenhoet R 2004 A microphysical interpretation of radar reflectivity–rain rate relationships; J. Atmos. Sci. 61 1114–1131.

    Article  Google Scholar 

  • Stephens G L, Vane D, Boain R, Mace G, Sassen K, Wang Z, Illingworth A, O’Connor E, Rossow W, Durden S, Miller S, Austin R, Benedetti A, Mitrescu C and Cloud-Sat Science Team 2002 The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation; Bull. Am. Meteor. Soc. 83 1771–1790.

    Article  Google Scholar 

  • Stewart R E, Marwitz J D, Pace J C and Carbone R E 1984 Characteristics through the melting layer of stratiform clouds; J. Atmos. Sci. 41 3227–3237.

    Article  Google Scholar 

  • Testud J, Oury S, Black R A, Amayenc P and Dou X 2001 The concept of ‘normalized’ distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing; J. Appl. Meteorol. Clim. 40 1118–1140.

    Article  Google Scholar 

  • Tridon F, Van Baelen J and Pointin Y 2011 Aliasing in micro rain radar data due to strong vertical winds; Geophys. Res. Lett. 38, doi: 10.1029/2010GL046018.

    Google Scholar 

  • Tokay A and Short D A 1996 Evidence from tropical raindrop spectra of the origin of the rain from stratiform versus convective clouds; J. Appl. Meteorol. 35 506–531.

    Google Scholar 

  • Ulbrich C W and Atlas D 2007 Microphysics of rain drop size spectra: Tropical continental and maritime storms; J. Appl. Meteorol. Clim. 46 1777–1791.

    Article  Google Scholar 

  • White A B, Gottas D J, Strem E T, Ralph F M and Neiman P J 2002 An automated brightband height detection algorithm for use with doppler radar spectral moments; J. Atmos. Oceanic Technol. 19 687–697.

    Article  Google Scholar 

  • White A B, Neiman P J, Ralph F M, Kingsmill D E and Persson P O G 2003 Coastal orographic rainfall processes observed by radar during the California Land-Falling Jets Experiment; J. Hydrometeorol. 4 264–282.

    Article  Google Scholar 

  • Williams C R, Ecklund W L and Gage K S 1995 Classification of precipitating clouds in the tropics using 915 MHz wind profilers; J. Atmos. Oceanic Technol. 12 996–1012.

    Article  Google Scholar 

  • Willis P T and Heymsfield A J 1989 Structure of the melting layer in mesoscale convective system stratiform precipitation; J. Atmos. Sci. 46 2008–2025.

    Article  Google Scholar 

  • Yuter S E, Kingsmill D E, Nance L B and Löffer-Mang M 2006 Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow; J. Appl. Meteorol. Clim. 45 1450–1464.

    Article  Google Scholar 

  • Zawadzki I and Antonio Agostinho M de 1988 Equilibrium raindrop size distribution in tropical rain; J. Atmos. Sci. 45 3452–3459.

    Article  Google Scholar 

  • Zawadzki I, Szyrmer W, Bell C and Fabry F 2005 Modeling of the melting layer, Part III: The density effect; J. Atmos. Sci. 62 3705–3723.

    Article  Google Scholar 

Download references

Acknowledgements

The Indian Institute of Tropical Meteorology is funded by Ministry of Earth Sciences, Govt of India. Authors thank Prof. B N Goswami, Director, IITM for the constant encouragement and support. They are thankful to Dr. V Gopalkrishnan, IITM for providing the OTT parsivel disdrometer data and to CloudSat science teams for their efforts and cooperation in providing the data used here. The authors are thankful to the two anonymous reviewers and the editor for their comments and suggestions to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MAHEN KONWAR.

Rights and permissions

Reprints and permissions

About this article

Cite this article

KONWAR, M., MAHESKUMAR, R.S., DAS, S.K. et al. Nature of light rain during presence and absence of bright band. J Earth Syst Sci 121, 947–961 (2012). https://doi.org/10.1007/s12040-012-0202-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-012-0202-x

Keywords

Navigation