Skip to main content
Log in

Atmospheric ultrafine aerosol number concentration and its correlation with vehicular flow at two sites in the western Himalayan region: Kullu-Manali, India

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

The concentration of ultrafine aerosol particles of aitken and nucleation mode having size in the range of 1–20 nm was monitored with water-based Condensation Particle Counter. The monitoring was carried out from midnight-to-midnight in every alternate day on a fortnightly basis to represent summer, monsoon and winter (autumn) seasons of 2008 at Mohal (1154 m amsl) and Kothi (2530 m amsl) in Kullu-Manali area of the northwestern Himalayan region of India. The results indicate that diurnal pattern has faint bimodal structure with two peaks, one in morning and the other in evening at both the sites but it is not as distinct as found in plains. There is rather a constant particle density pattern of large magnitude consistent with vehicular movement from morning till evening. The monthly 24 h average particle density gradually picks up from January, increases rapidly in summer months and then decreases in monsoon season at Mohal but at Kothi it keeps on rising from April to October with a slight more increase in September. The particle density is more in summer than in monsoon season at Mohal, a trend opposite to plains. It may be due to the development of warm thermal layer on valley floor while a cold layer develops along snowy hilltops in winter leading to convection of fine particle up the slopes of valley during daytime. At Kothi, the trend is same as it is in continental plains but opposite to Mohal. The relatively more value of particle density in September and October at both the sites may be due to month long International Kullu Dussehra fair in the valley. The vehicular survey conducted agrees well with entire study period averaged diurnal variations and monthly 24 h averaged value of fine particle density. The average value of ultrafine particle density at each hour of a day for entire study period is 20369 ± 1230 Ncm − 3 and 14389 ± 1464 Ncm − 3 at Mohal and Kothi sites, respectively. The comparison with earlier results shows a significant increase indicating impact of vehicular onslaught on pure air of this hilly region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aalto P, Hameri K, Paatero P, Kulmala M, Forastiere F, Cattani G, Marconi A, Cyrys J, VonKlot S, Zetzsche K, Peters A, Bouso L, Castano G, Palacio J A, Sunyer J, Lanki T, Pekkanen J, Sjoval B, Berglind N, Bellander T and Nyberg F 2005 Aerosol number concentration measurements in five European cities using TSI-3022 condensation counter over three-year period during health effects of air pollution on susceptible subpopulations; J. Air Waste Manage. Assoc. 55(8) 1064–1076.

    Google Scholar 

  • Aitken J 1923 Collection of scientific papers (London & New York: Cambridge University Press) p. 13.

    Google Scholar 

  • Berico M, Luccinni A and Formignani M 1997 Atmospheric aerosols in an urban area – Measurement of TSP & PM10 standards and pulmonary deposition assessments; Atmos. Environ. 31 3659–3665.

    Article  Google Scholar 

  • Biswas S, Fine P M, Gellar M D, Hering S V and Sioutas C 2005 Performance evaluation of recently developed water based condensation particle counter; Aerosol Sci. Technol. 39 419–427.

    Article  Google Scholar 

  • Bostrom N 2002 Existential Risks: Analyzing human extinction scenario and related hazards; J. Evol. Tech. 9(4.7) 1–30.

    Google Scholar 

  • Calderon G L, Azzarelli B, Acuna H, Garcia R, Gambling T M, Villarraeal C A and Recastle B 2002 Air pollution and brain damage; Toxicol. Pathol. 30 373–389.

    Article  Google Scholar 

  • Census of India 2001 Provisional Population Totals – Part-2; Director of Census Operation, Govt. of Himachal Pradesh, Shimla, India, pp. 1–79.

  • Devara P C S, Pandithurai G, Raj P E and Sharma S 1996 Investigations of aerosol optical depth variations using spectroradiometer at urban station, Pune, India; J. Aerosol Sci. 27 621–632.

    Article  Google Scholar 

  • Donaldson K and Macnee X W 1998 Ultrafine (nanometre) particle mediated lung injury; J. Aerosol Sci. 6 553–560.

    Article  Google Scholar 

  • Gajananda Kh, Kuniyal J C, Momin G A, Rao P S P, Safai P D and Ali K 2005 Trend of atmospheric aerosols over north western Himalayan region, India; Atmos. Environ. 39(27) 4817–4825.

    Article  Google Scholar 

  • Goyal J K and Sharma J N 1963 Mathematical Statistics (Krishna Prakashan Mandir, Meerut, India), pp 378–476 & tables VI, X.

  • Hansen A D A, Rosen H and Novakov T 1984 The Aethalometer – An instrument for the real-time measurement of optical absorption by aerosol particles; Sci. Tot. Environ. 36 191–196.

    Article  Google Scholar 

  • Haurwitz B and Austin J M 1944 Climatology (New York: McGraw-Hill Book Company, Inc.), p. 38.

    Google Scholar 

  • Junge C E 1963 Air chemistry and radioactivity (New York, USA: Academic Press Inc.), pp 11–208.

    Google Scholar 

  • Kivekas N, Sun J, Zhan M, Kerminen V M, Hyvarinen A, Komppula M, Viisanen Y, Hong N, Zhang Y, Kulmala M, Zhang X C, Deli-Geer and Lihavainen H 2009 Long term particle size distribution measurements at Mount Waliguan, a high-altitude site in inland China; Atmos. Chem. Phys. 9 5461–5474.

    Article  Google Scholar 

  • Komppula M, Lihavainen H, Hatakka J, Paatero J, Aalto P, Kulmala M and Viisanen Y 2003 Observations of new particle formation and size distributions at two different heights and surroundings in subarctic area in northern Finland; J. Geophys. Res.-Atmos. 108(D9) 4295.

    Article  Google Scholar 

  • Komppula M, Lihavainen H, Hyvarinen A P, Kerminen V M, Panwar T S, Sharma V P and Viisanen Y 2009 Physical properties of aerosol particles at a Himalayan background site in India; J. Geophys. Res. 114 D12202, doi:10.1029/2008JD011007.

    Article  Google Scholar 

  • Kulmala M, Riipinen I, Sipilia M, Manninen H, Petaja T, Junninen H, Dal Maso M, Mordas G, Mirme A, Vana M, Hirsikko A, Laakso L, Harrison R M, Hansson I, Leung C, Lehtinen K E J and Kerminen V M 2007 Towards direct measurement of atmospheric nucleation, Science 318 89–92.

    Article  Google Scholar 

  • Kuniyal J C, Vishvakarma S C R, Badola H K and Jain A P 2004 Tourism in Kullu valley: An environmental assessment (Bishen Singh & Mohindra Pal Singh, Dehradun, India), pp 1–210.

  • Laden F, Neas L M, Dockery D W and Schwartz J 2000 Association of fine particulate matter from different sources with daily mortality in six US cities; Environ. Health. Persp. 108 941–947.

    Article  Google Scholar 

  • Lal D S 1997 Climatology (Sharda Pustak Bhawan, Allahbad, India), pp 65–76.

  • Lehtipalo K, Sipila M, Riipinen I, Nieminen T and Kulmala M 2008 Analysis of atmospheric neutral and charged molecular clusters in Boreal forest using pulse height CPC; Atmos. Chem. Phys. Discuss. 8 20,661–20,685.

    Article  Google Scholar 

  • Maso M D, Sogacheva L, Anisimov M P, Arshinov M, Baklanov A, Belan B, Khodzher T V, Obolkin V A, Vlasov A, Zagaynov V A, Lushnikov A, Riipinen I, Kerminen V M and Kulmala M 2008 Aerosol particle formation events at two Siberian stations inside Boreal forest; Boreal Environ. Res. 13 81–92.

    Google Scholar 

  • Mohan M and Nigam S K 2003 Modeling technique for fog prediction: A review; Indian J. Environ. Protec. 23(5) 481–488.

    Google Scholar 

  • Moorthy K K, Satheesh S K and Krishna Murthy B V 1997 Investigations of marine aerosols over the Tropical Indian Ocean; J. Geophys. Res. 102 18,827–18,842.

    Article  Google Scholar 

  • Moorthy K K, Satheesh S K and Krishna Murthy B V 1998 Characteristics of spectral optical depths and size distributions of aerosols over Tropical Oceanic Regions; J. Atmos. Sol. Terr. Phys. 60(10) 981–992.

    Article  Google Scholar 

  • Moorthy K K, Babu S S and Satheesh S K 2007 Temporal heterogeneity in aerosol characteristics and the resulting radiative impact at a tropical coastal station – II: Direct short wave radiative forcing; Ann. Geophys. 25 2308–2320.

    Google Scholar 

  • Moorthy K K, Satheesh S K, Babu S S and Dutt C B S 2008 Integrated campaign for aerosols, gases and radiation budget (ICARB): An Overview; J. Earth Syst. Sci. 117 243–262.

    Article  Google Scholar 

  • Mordas G, Manninen H E, Petoja T, Aalto P P, Hameri K and Kulmala M 2008 On operation of the ultrafine water based CPC and comparison with other models; Aerosol Sci. Technol. 42 152–158.

    Article  Google Scholar 

  • Oberdorster G, Ferin J, Penney D P, Soderholm S C, Gelein R and Piper H C 1990 Increased pulmonary toxicity of ultrafine particles to lung lavage studies; J. Aerosol Sci. 17 361–364.

    Google Scholar 

  • Oberdorster G, Sharp Z, Atudorei V, Eder A, Gelin R, Kreyling W and Cox C 2004 Translocation of inhaled ultrafine particles to brain; Inhal. Toxicol. 16 437–445.

    Article  Google Scholar 

  • Pant P, Hegde P, Dumka U C, Saha A, Srivastava M K and Sagar R 2006 Aerosol characteristics at a high-altitude location during ISRO-GBP Land Campaign-II; Curr. Sci. 91 1053–1061.

    Google Scholar 

  • Pekkanen J, Timonen K L, Ruuskanen J, Reponen A and Mirme A 1997 Effects of ultrafine and fine particles in urban air on peak expiratory flow among children with asthmatic symptoms; Environ. Res. 74 24–33.

    Article  Google Scholar 

  • Peters A, Wichmann H E, Tuch T, Heinrich J and Hyder J 1997 Respiratory effects are associated with the number of ultrafine particles in human respiratory tract; Am. J. Respir. Crit. Care Med. 155(4) 1376–1383.

    Google Scholar 

  • Prospero J M, Charlson R J, Mohnen V, Jaenicke R, Delany A C, Moyers S, Zoller W and Rahn K 1983 The atmospheric aerosol system: An overview; Rev. Geophys. 21 1607–1629.

    Article  Google Scholar 

  • Querol X, Alastuey A, Rodriguez S, Plana F, Ruiz C R, Cots N, Massakgul G and Puig O 2001 PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catelonia, Spain; Atmos. Environ. 35 6407–6419.

    Article  Google Scholar 

  • Ramanathan V, Crutzen P J, Kiehl J T and Rosenfeld D 2001 Aerosol, climate and the hydrological cycle; Science 294 2119–2124.

    Article  Google Scholar 

  • Rodriguez S, Van Dingenen R, Putaud J P, Martins-Dos Santos S and Roselli D 2005 Nucleation and growth of new particles in the rural atmosphere of Northern Italy – Relationship to air quality monitoring; Atmos. Environ. 39(36) 6734–6746.

    Article  Google Scholar 

  • Satheesh S K 2002 Aerosol radiative forcing by Indian Ocean aerosols: Effect of cloud and surface reflection; Ann. Geophys. 20 2105–2109.

    Article  Google Scholar 

  • Satheesh S K, Moorthy K K and Srinivasan J 2004 Introduction to aerosols and impacts on atmosphere: Basic concepts, ISRO-GBP Scientific Report; SR 05, pp 1–100.

  • Satheesh S K, Deepshikha S and Srinivasan J 2006 Impact of dust aerosols on earth-atmosphere clear-sky albedo and its short wave radiative forcing over African and Arabian regions; Int. J. Remote Sens. 27 1691–1706.

    Article  Google Scholar 

  • Schwartz J, Norris G, Larson T, Sheppard L, Claiborne C and Koenig J 1999 Episodes of high coarse particle concentrations are not associated with increased mortality; Environ. Health Perspect. 107(5) 339–342.

    Article  Google Scholar 

  • Sellegri K, Laj P, Venzac H, Boulon J, Picard D, Villani P, Bonasoni P, Marinoni A, Cristofanelli P and Vuillermoz E 2010 Seasonal variations of aerosol size distributions based on long-term measurements at the high altitude Himalayan site of Nepal Climate Observatory-Pyramid (5079 m), Nepal; Atmos. Chem. Phys. 10 6537–6566.

    Article  Google Scholar 

  • Sharma N L, Kuniyal J C, Singh M, Negi A K, Singh K and Sharma P 2009 Number concentration characteristics of ultrafine aerosols (atmospheric nanoparticles/aitken nuclei) during 2008 over western Himalayan region Kullu-Manali, India; Indian J. Radio Space Phys. 38 326–337.

    Google Scholar 

  • Svenningsson B 1992 Hygroscopic growth of aerosol particles and and its relation to nucleation scavenging in clouds, PhD dissertation, University of Lund Sveden.

  • Tang I N 2000 Phase transformation and growth of hygroscopic aerosols: Aerosol chemical process in the environment (ed.) Spurny K R, Lewis Publishers, 61–80.

  • Tegen I, Lacis A and Fung I 1996 The influence of mineral aerosol from distribution soils on the global radiation budget; Nature 380 419–422.

    Article  Google Scholar 

  • Tiitta P, Raunema T, Tissari J, Yli-Tuomi T, Leskinen A, Kukkonen J, Harkonen J and Karppinen A 2002 Measurements and modeling of PM2.5 concentration near a major road in Kuopio, Finland; Atmos. Environ. 36 4057–4068.

    Article  Google Scholar 

  • Trewartha G T 1968 An Introduction to Climate (New York: McGraw-Hill Book Company, Inc.), p. 40.

    Google Scholar 

  • Tunved P, Hansson H-C, Kulmala M, Aalto P, Viisanen Y, Karlsson H, Kristensson A, Swietlicki E, Dal Maso M, Strom J and Komppula M 2003 One year boundary layer aerosol size distribution data from five Nordic background stations; Atmos. Chem. Phys. 3 2183–2205.

    Article  Google Scholar 

  • Tunved J, Korhenen H, Strom J, Hansson H C, Lehtinen K E J and Kulmala M 2006 Is nucleation capable of explaining observed aerosol integral number increase during southerly transport over Scandinavia? Tellus B 58(2) 129–140.

    Article  Google Scholar 

  • Vakeva M 2002 Studies of hygroscopic properties of nucleation mode particles; Report Series in Aerosol Science 55 1–29, ISBN 952–5027–32–5.

    Google Scholar 

  • Varikoden H, Sasikumar V, Sampath S, Muralidas S and Mohankumar G 2008 Diurnal and spatial variation of condensation particles in Kerala, South India; Curr. Sci. 94(2) 233–237.

    Google Scholar 

  • Venzac H, Sellegri K, Villani P, Picard D and Laj P 2009 Seasonal variation of aerosol size distributions in the free troposphere and residual layer at the puy de Dome station, France; Atmos. Chem. Phys. 9 1465–1478.

    Article  Google Scholar 

  • Wang Y, Che H, Ma J, Wang Q, Shi G, Chen H, Goloub P and Hao X 2009 Aerosol radiative forcing under clear, hazy, foggy, and dusty weather conditions over Beijing, China; Geophys. Res. Lett. 36 L06804, doi: 10.1029/2009GL037181.

    Article  Google Scholar 

  • Wilson F J, Hiller F C, Wilson J D and Bone R C 1985 Quantitative deposition of ultrafine particles in human respiratory tract; J. Appl. Physiol. 58(1) 223–229.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NAND L SHARMA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SHARMA, N.L., KUNIYAL, J.C., SINGH, M. et al. Atmospheric ultrafine aerosol number concentration and its correlation with vehicular flow at two sites in the western Himalayan region: Kullu-Manali, India. J Earth Syst Sci 120, 281–290 (2011). https://doi.org/10.1007/s12040-011-0046-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12040-011-0046-9

Keywords.

Navigation