Skip to main content
Log in

Electrochemical and spectroscopic studies of the interaction of (+)-epicatechin with bovine serum albumin

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The mechanism of the electrochemical oxidation of (+)-epicatechin (epiCAT) in a hydro-alcoholic medium, at a glassy carbon electrode, was studied using cyclic and square wave voltammetric techniques and at different pHs. It proceeds in a cascade mechanism related to the two resorcinol hydroxyl groups and the other three hydroxyl groups in epiCAT which present electroactivity and is pH-dependent. The oxidation of the 3′,4′-dihydroxyl moiety, occurs first at a very low positive potential, and it is a two-electron/two proton reversible reaction. The product obtained from the oxidation of the 3′,4′-dihydroxyl moiety then undergoes a chemical reaction followed by an electrochemical process to give an electroinactive product. The proposed mechanism is an ECE type mechanism. After the addition of bovine serum albumin (BSA) to epiCAT solution, the oxidation peak currents decreased with no peak potential shift and no new peaks appeared. The diffusion coefficients of both free and bound epiCAT were estimated from the cyclic voltammetry data (Df = 2.37 × 10−10 cm2s−1 and Db = 6.28 × 10−11 cm2s−1). An epiCAT-BSA complex is formed with binding constant Kapp = 1.8 × 104, calculated from UV-vis spectroscopy data.

Graphical abstract

The oxidation process of (+)-epicatechin (I to I’ and II) in a hydro-alcoholic medium at a glassy carbon electrode follows an ECE type mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Scheme 2
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

epiCAT:

(+)-Epicatechin

SCE:

Saturated calomel electrode

CV:

Cyclic voltammetry

SWV:

Square wave voltammetry

References

  1. Chantal CLM, France VM, Muriel T, Helene SM, Jacques M and Marc SW 1996 Protective effects against chronic diseases Toxicol. 114 19

    Article  Google Scholar 

  2. Hollman PCH and Katan MB 1999 Dietary flavonoids: intake, health effects and bioavailability Food Chem. Toxicol. 37 937

    Article  CAS  Google Scholar 

  3. Polissero C, Lenczowski MJP, Chinzl D, Davail CB, Sumpter JP and Fostier A 1996 Effects of flavonoids on aromatase activity an in vitro J. Steroid. Biochem. Mol. Biol. 57 215

    Article  Google Scholar 

  4. Fujiki H, Horinchi T, Yamashiata K, Hakii H, Suganuma M, Nishino H, Iwashina A, Hirata Y, Sugimura T, Cody V, Middleton E and Harbone J B 1986 In Biochemical, Pharmacological and Structure Activity Relationships R Alan (Ed.) (New York: John Wiley) p. 429

  5. Deschner E E, Ruperto J, Wong G and Newmark H L 1991 Carcinogenicity, mutagenicity and cancer preventing activities of flavonoids: A structure-system-activity relationship (SSAR) analysis Carcinogenesis 12 1193

  6. Elangovan V, Sekar N and Govindasamy S 1994 Chemopreventive potential of dietary bioflavonoids against 2-methylcholanthrene-induced tumorigenesis Cancer Lett. 87 107

    Article  CAS  Google Scholar 

  7. Chang WS, Lee YJ, Lu FJ and Chiang HC 1993 Inhibitory effects of flavonoids on xanthine oxidase Anticancer Res. 13 2165

    CAS  PubMed  Google Scholar 

  8. Jovanovic S V, Hara Y, Steenken S and Simic M G 1995 Antioxidant Potential of Gallocatechins.A Pulse Radiolysis and Laser Photolysis Study J. Am. Chem. Soc. 117 9881

  9. Jovanovic SV, Steenken S, Tosic M, Marjanovic B and Simic MG 1994 Flavonoids as antioxydants J. Am. Soc. 116 4846

    Article  CAS  Google Scholar 

  10. Bors W, Heller W, Michel C and Saran M 1990 Flavonoids as antioxydants: determination of radical-scavenging efficiencies Meth. Enzymol. 186 343

    Article  CAS  Google Scholar 

  11. Bicer E and Cinar E 2005 Voltammetric and spectroscopic studies on the interaction of pentoxifylline with cysteine in the presence and absence of UV irradiation J. Phys. Chem. 219 817

    CAS  Google Scholar 

  12. Bicer E and Cetinkaya P 2009 Voltammetric study on the interaction of novobiocin with cysteine: pH effect J. Chil. Chem. Soc. 54 46

    CAS  Google Scholar 

  13. La-Scalea MA, Serrano SHP, Ferreira EI and Brett AMO 2002 The electrochemical oxidation of DNA J. Pharm. Biomed. 29 561

    Article  CAS  Google Scholar 

  14. Zhao J, Zheng X, Xing W, Huang J and Li G 2007 Electrochemical studies of camptothecin and its interaction with human serum albumin Int. J. Mol. Sci. 8 42

    Article  CAS  Google Scholar 

  15. Shah A, Khan AM, Qureshi R, Ansari FL, Nazar MF and Shah SS 2008 Redox behavior of anticancer chalcone Int. J. Mol. Sci. 9 1224

    Article  Google Scholar 

  16. Tian X, Song Y, Dong H and Ye B 2008 Electrochemistry of interaction of 2-(2-nitrophenyl)-benzimidazole derivatives with DNA Bioelectrochemistry 73 18

  17. Dong SY, Xue CX and Huang TL 2007 Voltammetric and spectroscopic studies on the interaction of tilmicosin with bovine serum albumin Chin. Chem. Lett. 18 726

    Article  CAS  Google Scholar 

  18. Wang C, Wu QH, Wang Z and Zhao J 2006 Study of the interaction of carbamazepine with bovine serum albumin Anal. Sci. 22 435

    Article  CAS  Google Scholar 

  19. Yang XX, Hu ZP, Chan SY and Zhou SF 2006 Monitoring drug-protein interaction Clin. Chim. Acta 365 9

    Article  CAS  Google Scholar 

  20. Pjura PE, Grzeskowiak K and Dickerso RE 1987 Dynamics in the DNA recognition by DAPI J. Mol. Biol. 197 257

    Article  CAS  Google Scholar 

  21. Carrondo M A A F de CT, Coll M, Aymami J, Wang A H J, Van der Marel G A, Van Boom J H and Rich A 1989 Binding of a Hoechst dye to d (CGCGATATCGCG) and its influence on the conformation of the DNA fragment Biochemistry 28 7849

  22. Rohs R, Sklenar H, Lavery R and Roder B 2000 Methylene blue binding to DNA with alternating GC base sequence: a modeling study J. Am. Chem. Soc. 122 2860

    Article  CAS  Google Scholar 

  23. Loontiens F G, Regenfuss P, Zechel A, Dumortier L and Clegg R M 1990 Binding characteristics of Hoechst 33258 with calf thymus DNA, poly[d(A-T)] and d(CCGGAATTCCGG): multiple stoichiometries and determination of tight binding with a wide spectrum of site affinities Biochemistry 29 9029

  24. Tuite E and Norden B 1994 Sequence-specific interactions of Methylene Blue with polynucleotides and DNA: A spectroscopic study J. Am. Chem. Soc. 116 7548

    Article  CAS  Google Scholar 

  25. Ateba BA, Lissouck D, Azébazé A, Ebelle CT, Nassi A, Ngameni E, et al. 2016 Characterization of Mammea A/AA in solution and in interaction with β-cyclodextrin: UV–visible spectroscopy, cyclic voltammetry and DFT-TDDFT/MD study J. Mol. Liquids 213 294

    Article  CAS  Google Scholar 

  26. Barghouthi SA 2005 Thermodynamic studies of antimalarial drugs and their interaction with Myoglobin, Hemoglobin and Phospholipid model membranes J. Appl. Sci. 5 540

    Article  CAS  Google Scholar 

  27. Tajmir-Riahi HA 2007 An overview of dug binding to human serum albumin: protein folding and unfolding Sci Iranica 14 87

    CAS  Google Scholar 

  28. Fan J C, Chen X, Wang Y, Fan C P and Shang Z C 2006 Binding interaction of pefloxacin mesylate with bovine lactoferrin and human serum albumin J. Zhejiang, Univ. Sci. 7 452

  29. Mascini M, Bagni G, Di Pietro ML, Ravera M and Osella D 2006 Electrochemical biosensor evaluation of the interaction between DNA and metallo-drugs Biometals 19 409

    Article  CAS  Google Scholar 

  30. Dong SY, Xue CX and Huang TL 2008 Electrochemical studies of the interaction of clarithromycin with bovine serum albumin Anal. Sci. 24 1087

    Article  CAS  Google Scholar 

  31. Fotouhi L, Banafsheh S and Heravi MM 2009 Electrochemistry of the interaction of furazolidone and bovine serum albumin Bioelectrochemistry 77 26

    Article  CAS  Google Scholar 

  32. Mabou L J B, Kungo S S, Makota S, Njanja E, Ebelle C T, Ngameni E and Nassi A 2018 Voltammetric behavior of Mammeisin (MA) at a glassy carbon electrode and its interaction with Bovine Serum Albumin (BSA) Bioelectrochemistry 119 20

  33. Sun W, Han YY and Jiao K 2006 Voltammetric albumin quantification based on its interaction with carminic acid J. Serb. Chem. Soc. 71 385

    Article  CAS  Google Scholar 

  34. Feudjou M F, Mbock A M, Ouahouo M B W, Sielinou V T, Gounoue R K, Mkounga P, Lenta B N, Dimo T, Fekam F B, Sewald N and Nkengfack A E 2020 An antibacterial isovaleronitrile Diglycoside From Detarium microcarpum Guill. Perr. (Fabaceae) Nat. Prod. Com. 15 1

  35. Chantal GMH, Guido RMMH, Jef AJMV and Aalt B 2001 Peroxynitrite scavenging of flavonoids: structure activity relationship Environ. Toxicol. Pharmacol. 10 199

    Article  Google Scholar 

  36. Rafiee M and Nematollahi D 2009 Electrochemical oxidation of catechols in the presence of cyanoacetone and methyl cyanoacetate J. Electroanal. Chem. 626 36

    Article  CAS  Google Scholar 

  37. Koryta J and Vanysek P 1981 In Electrochemical Phenomena at the Interface of Two Immiscible Electrolyte Solutions In Advances in electrochemistry and electrochemical engineering H Gerischer and ChW Tobias (Eds.) (New-York: John Wiley) p. 125

  38. Marken F, Neudeck A and Bond A M 2010 In Cyclic voltammetry. Electroanalytical methods: Guide to experiments and applications 2nd edn., F Scholz (Ed.) (Berlin Heidelberg: Springer-Verlag) p. 97

  39. Mirceski V, Gulabosky R, Bogeski I and Hoth M 2007 Redox chemistry of Ca-Transporter 2-palmitoylhydroquinone in an artificial thin organic film membrane J. Phys. Chem. 16 6068

    Google Scholar 

  40. Sivakumar A, Reddy SJ and Krishnan VR 1984 Voltammetry study of p-methyl benzophenone in aqueous media J. Electrochemical. Soc. Ind. 2 121

    Google Scholar 

  41. Lemanska K, Szymusiak H, Tyrakowska B, Zielinski R, Soffers EMF and Rietjens IMCM 2001 The influence of pH on antioxidant properties and the mechanism of antioxidant action of hydroxyflavones Free Radic. Biol. Med. 17 879

    Google Scholar 

  42. Zhang Q-A, Fu X-Z and Martín JFG 2017 Effect of ultrasound on the interaction between (+)-epicatechin gallate and bovine serum albumin in a model wine Ultrason. Sonochem. 37 405

    Article  CAS  Google Scholar 

  43. Swarup R, Sintu G, Raj KN, Majundar KC and Tapan KD 2015 Studies of the interaction of bovine serum albumin with pyrimidine-annulated spirodihydrofuran and its biological activities Adv. Matter. Lett. 6 1018

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Professor Pierre Mkounga (Laboratory of Structural and Analytical Chemistry, Faculty of Science, University of Yaoundé 1, Cameroon) for providing epicatechin used in this study. The authors also thank Dr Xavier Siwe Noundou for patiently proofreading the draft manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules-Blaise Mabou Leuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leuna, JB.M., Pengou, M., Tchieno, F.M.M. et al. Electrochemical and spectroscopic studies of the interaction of (+)-epicatechin with bovine serum albumin. J Chem Sci 133, 44 (2021). https://doi.org/10.1007/s12039-021-01894-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01894-6

Keywords

Navigation