Skip to main content
Log in

An improved protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones through L-valine-mediated domino three-component strategy

  • Rapid Communication
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An expeditious, metal-free protocol has been demonstrated for the synthesis of isoxazolone derivatives using domino multi-component strategy. The envisaged methodology involves the L-valine promoted three-component cyclo-condensation reaction of alkylacetoacetates, hydroxylamine hydrochloride and aldehydes in ethanol under reflux. The reaction proceeded to deliver the desired products in good to excellent yields (74–97%), exhibited good functional group tolerance and completed in less than 4 min with most of the substrates. High yields, short reaction time, noncorrosive organocatalyst, mild reaction conditions, clean reaction profiles and the absence of any tedious workup or purification are the beneficial features of this process. Moreover, quantum computational study has been performed at B3LYP/6-311G++(d, p) level to investigate the various DFT based molecular descriptors, HOMO–LUMO energy gap and electrostatic potential surface properties of the synthesized product.

Graphic abstract

An improved protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones through L-valine-mediated domino three-component strategy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Scheme 2
Scheme 3
Figure 2
Figure 3

References

  1. Sunderhaus J D and Martin S F 2009 Applications of multi-component reactions to the synthesis of diverse heterocyclic scaffolds Chem. Eur. J. 15 1300

    CAS  Google Scholar 

  2. Umamahesh B, Sathesh V, Ramachandran G, Satishkumar M and Sathiyanarayanan K 2012 LaCl3·7H2O as an efficient catalyst for one-pot synthesis of highly functionalized piperidines via multi-component organic reactions Catal. Lett. 142 895

    CAS  Google Scholar 

  3. Das D 2016 multi-component reactions in organic synthesis using copper‐based nanocatalysts ChemistrySelect 1 1959

  4. Balme G 2004 Pyrrole syntheses by multi-component coupling reactions Angew. Chem. Int. Ed. 43 6238

    CAS  Google Scholar 

  5. Sunderhaus J D and Martin S F 2009 Applications of multi-component reactions to the synthesis of diverse heterocyclic scaffolds Chem. Eur. J. 15 1300

    CAS  Google Scholar 

  6. Domling A, Wang W and Wang K 2012 Chemistry and biology of multi-component reactions Chem. Rev. 112 3083

    CAS  Google Scholar 

  7. Gore R P and Rajput A P 2013 A review on recent progress in multi-component reactions of pyrimidine synthesis Drug Invent. Today 5 148

    CAS  Google Scholar 

  8. Cioc R C, Ruijter E and Orru R V A 2014 multi-component reactions: Advanced tools for sustainable organic synthesis Green Chem. 16 2958

  9. Laughlin S K, Clark M P, Djung J F, Golebiowski A, Brugel T A, Sabat M, Bookland R G, Laufersweiler M J, VanRens J C, Townes J A, De B, Hsieh L C, Xu S C, Walter R L, Mekel M J and Janusz M J 2005 The development of new isoxazolone based inhibitors of tumor necrosis factor-alpha (TNF-α) production Bioorg. Med. Chem. Lett. 15 2399

    CAS  Google Scholar 

  10. Ishioka T, Tanatani A, Nagasawa K and Hashimoto Y 2003 Anti-Androgens with full antagonistic activity toward human prostate tumor LNCaP cells with mutated androgen receptor Bioorg. Med. Chem. Lett. 13 2655

    CAS  Google Scholar 

  11. Ahmad A, Ahmad A, Varshney H, Rauf A, Rehan M, Subbarao N and Khan A U 2013 Designing and synthesis of novel antimicrobial heterocyclic analogs of fatty acids Eur. J. Med. Chem. 70 887

    CAS  Google Scholar 

  12. Mao J, Yuan H, Wang Y, Wan B, Pieroni M, Huang Q, van Breemen R B, Kozikowski A P and Franzblau S G 2009 From Serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters J. Med. Chem. 52 6966

    CAS  PubMed  Google Scholar 

  13. Kumbhare R M, Kosurkar U B, Ramaiah M J, Dadmal T L, Pushpavalli S N C V L and Pal-Bhadra M 2012 Synthesis and biological evaluation of novel triazoles and isoxazoles linked 2-phenyl benzothiazole as potential anticancer agents Bioorg. Med. Chem. Lett. 22 5424

    CAS  Google Scholar 

  14. Deng B-L, Cullen M D, Zhou Z, Hartman T L, Buckheit R W, Pannecouque C, Clercq E D, Fanwick P E and Cushman M 2006 Synthesis and anti-HIV activity of new alkenyldiarylmethane (ADAM) non-nucleoside reverse transcriptase inhibitors (NNRTIs) incorporating benzoxazolone and benzisoxazole rings Bioorg. Med. Chem. 14 2366

    CAS  Google Scholar 

  15. Ishioka T, Kubo A, Koiso Y, Nagasawa K, Itai A and Hashimoto Y 2002 Novel non-steroidal/non-anilide type androgen antagonists with an isoxazolone moiety Bioorg. Med. Chem. 10 1555

    CAS  Google Scholar 

  16. Jana C and Banerjee S 2016 A brief insight into isoxazole analogues Der Pharm. Lett. 8 121

    Google Scholar 

  17. Cocivera M, Effio A, Chen H E and Vaish S 1976 Reaction of hydroxylamine with ethyl acetoacetate. Details of the addition and cyclization steps studied by flow nuclear magnetic resonance J. Am. Chem. Soc. 98 7362

  18. Villemin D, Martin B and Garrigues B 1993 Potassium fluoride on alumina: Dry condensation of 3-phenylisoxazol-5-one with aldehydes under microwave irradiation Synth. Commun. 23 2251

    CAS  Google Scholar 

  19. Ablajan K and Xiamuxi H 2012 Efficient one-pot synthesis of β-unsaturated isoxazol-5-ones and pyrazol-5-ones under ultrasonic irradiation Synth. Commun. 42 1128

    CAS  Google Scholar 

  20. Liu Q and Hou X 2012 One-pot three-component synthesis of 3-methyl-4-arylmethylene- isoxazol-5(4H)-ones catalyzed by sodium sulfide Phosphorus Sulfur Silicon Relat. Elem. 187 448

    CAS  Google Scholar 

  21. Saikh F, Das J and Ghosh S 2013 Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol Tetrahedron Lett. 54 4679

  22. Kiyani H and Ghorbani F 2017 Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones in aqueous medium J. Saudi Chem. Soc. 21 S112

    CAS  Google Scholar 

  23. Kiyani H, Kanaani A, Ajloo D, Ghorbani F and Vakili M 2015 N-bromosuccinimide (NBS)-promoted, three-component synthesis of α,β-unsaturated isoxazol-5(4H)-ones, and spectroscopic investigation and computational study of 3-methyl-4-(thiophen-2-ylmethylene)isoxazol-5(4H)-one Res. Chem. Intermed. 41 7739

    CAS  Google Scholar 

  24. Kiyani H, Darbandi H, Mosallanezhad A and Ghorbani F 2015 2-Hydroxy-5-sulfobenzoic acid: An efficient organocatalyst for the three-component synthesis of 1-amidoalkyl-2-naphthols and 3,4-disubstituted isoxazol-5(4H)-ones Res. Chem. Intermed. 41 7561

    CAS  Google Scholar 

  25. Maddila S N, Maddila S, van Zyl W E and Jonnalagadda S B 2016 Ag/SiO2 as a recyclable catalyst for the facile green synthesis of 3-methyl-4-(phenyl)methylene-isoxazole-5(4H)-ones Res. Chem. Intermed. 42 2553

    CAS  Google Scholar 

  26. Dekamin M G and Peyman S Z 2016 Phthalimide-N-oxyl salts: Efficient organocatalysts for facile synthesis of (Z)-3-methyl-4-(arylmethylene)-isoxazole-5(4H)-one derivatives in water Monatsh Chem. 147 445

  27. Patil M S, Mudaliar C and Chaturbhuj G U 2017 Sulfated polyborate catalyzed expeditious and efficient three-component synthesis of 3-methyl-4-(hetero)arylmethylene isoxazole-5(4H)-ones Tetrahedron Lett. 58 3256

  28. Vekariya R H and Patel H D 2017 Facile, eco-friendly and one-pot synthesis of 3,4-disubstituted isoxazol- 5(4H)-ones using starch solution as a reaction media Indian J. Chem. 56B 890

    CAS  Google Scholar 

  29. Mosse S and Alexakis A 2006 Organocatalyzed asymmetric reactions via microwave activation Org. Lett. 8 3577

    CAS  Google Scholar 

  30. Connon S J 2006 Organocatalysis mediated by (thio)urea derivatives Chem. Eur. J. 12 5418

    Google Scholar 

  31. Wang Y, Pan J, Chen Z, Sun X and Wang Z 2013 Nucleophilic phosphine organocatalysis: A practical synthetic strategy for the drug-like nitrogen heterocyclic framework construction Mini-Rev. Med. Chem. 13 836

    CAS  Google Scholar 

  32. Kuriyama M, Soeta T, Hao X, Chen Q and Tomioka K 2004 N-Boc-L-valine-connected amidomonophosphane rhodium(I) catalyst for asymmetric arylation of N-tosylarylimines with arylboroxines J. Am. Chem. Soc. 126 8128

    CAS  PubMed  Google Scholar 

  33. Amedjkouh M 2005 Primary amine catalyzed direct asymmetric aldol reaction assisted by water Tetrahedron: Asymm. 16 1411

    CAS  Google Scholar 

  34. Ghosh K and Sarkar T 2013 L-valine derived benzimidazole based bis-urea in enantioselective fluorescence sensing of L-tartrate Tetrahedron Lett. 54 4568

    CAS  Google Scholar 

  35. Wang C, Wu X, Zhou L and Sun J 2015 L-valine derived chiral N-sulfinamides as effective organocatalysts for the asymmetric hydrosilylation of N-alkyl and N-aryl protected ketimines Org. Biomol. Chem. 13 577

    CAS  Google Scholar 

  36. Tiwari J, Singh S, Saquib M, Tufail F, Sharma A K, Singh S, Singh J and Singh J 2018 Organocatalytic mediated green approach: A versatile new L-valine promoted synthesis of diverse and densely functionalized 2-amino-3-cyano-4H-pyrans Synth. Commun. 48 188

    CAS  Google Scholar 

  37. Kour P, Kumar A and Rai V K 2017 Aqueous microwave-assisted DMAP catalyzed synthesis of β-phosphonomalonates and 2-amino-4H-chromen-4-ylphosphonates via a domino Knoevenagel-phospha-Michael reaction C. R. Chim. 20 140

    CAS  Google Scholar 

  38. Kour P, Kumar A, Sharma R, Chib R, Khan I A and Rai V K 2017 Synthesis of 2-amino-4H-chromen-4-ylphosphonates and β-phosphonomalonates via tandem Knoevenagel–Phospha-Michael reaction and antimicrobial evaluation of newly synthesized β-phosphonomalonates Res. Chem. Int. 43 7319

    CAS  Google Scholar 

  39. Kour P, Singh V P, Khajuria B, Singh T and Kumar A 2017 Al(III) chloride catalyzed multi-component domino strategy: Synthesis of library of dihydrotetrazolo[1,5-a]pyrimidines and tetrahydrotetrazolo[1,5-a]quinazolinones Tetrahedron Lett. 58 4179

  40. Kour P and Kumar A 2020 Cinchonine-driven multi-component domino Knoevenagel–Michael strategy: metal-free synthesis of quinoline-based 4H-pyran and tetrahydro-4H-chromene derivatives Res. Chem. Int. 46 2025

    CAS  Google Scholar 

  41. Cheng Q F, Liu X Y, Wang Q F, Liu L S, Liu W J, Lin Q and Yang X J 2009 One-pot synthesis of 3-methyl-4-arylmethylene-isoxazol-5(4H)-ones in aqueous media under ultrasonic irradiation Chin. J. Org. Chem. 29 1267

    CAS  Google Scholar 

  42. Parr R G and Yang W 1984 Density functional approach to the frontier-electron theory of chemical reactivity J. Am. Chem. Soc. 106 4049

    CAS  Google Scholar 

  43. Becke A D 1988 Density-functional exchange-energy approximation with correct asymptotic behavior Phys. Rev. A 38 3098

    CAS  Google Scholar 

  44. Parr R G, Donnelly R A, Levy M and Palke W E 1978 Electronegativity: The density functional viewpoint J. Chem. Phys. 68 3801

    CAS  Google Scholar 

  45. Pearson R G 1963 Hard and soft acids and bases J. Am. Chem. Soc. 85 3533

    CAS  Google Scholar 

  46. Parr R G and Pearson R G 1983 Absolute hardness: companion parameter to absolute electronegativity J. Am. Chem. Soc. 105 7512

    CAS  Google Scholar 

  47. Sharma P, Ahuja M, Kumar A and Sahu V 2015 Contribution of reactivity indexes in the formation of β-lactams through [2+2] cycloaddition between substituted ketenes and imines Chem. Phys. Lett. 628 85

    CAS  Google Scholar 

  48. Ahuja M, Biswas S, Sharma P and Samanta S 2018 Synthesis and photophysical properties of α‐pyrone‐fused‐pyrido[3, 2,1‐jk]carbazolone derivatives: DFT/TD‐DFT insights ChemistrySelect 3 4354

  49. Kiyooka S, Kaneno D and Fujiyama R 2013 Parr’s index to describe both electrophilicity and nucleophilicity Tetrahedron Lett. 54 339

    CAS  Google Scholar 

  50. Ahuja M, Reen G K, Kumar A and Sharma P 2016 A typical NEDDA cycloaddition strategy between C-3- and N-substituted indoles and butadienes using silica-supported copper triflate as an efficient catalytic system: A correlative experimental and theoretical study Chem. Lett. 45 752

    CAS  Google Scholar 

  51. Jaramillo P, Domingo L R, Chamorro E and Pérez P 2008 A further exploration of a nucleophilicity index based on the gas-phase ionization potentials J. Mol. Struct.: Theochem. 865 68

Download references

Acknowledgements

The author thanks SMVDU for providing facilities. P.K. thanks the University Grants Commission for a BSR fellowship. The contribution of IIM Jammu, Saif Chandigarh and the Department of Chemistry at University of Jammu for providing spectral data is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 560 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kour, P., Ahuja, M., Sharma, P. et al. An improved protocol for the synthesis of 3,4-disubstituted isoxazol-5(4H)-ones through L-valine-mediated domino three-component strategy. J Chem Sci 132, 108 (2020). https://doi.org/10.1007/s12039-020-01801-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01801-5

Keywords

Navigation