Skip to main content
Log in

A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In the present study, the dialdehyde carboxymethyl cellulose (DCMC) was cross-linked covalently to gelatin via the Schiff base reaction to form a three-dimensional hydrogel (DCMC-cl-G). The crosslinking degree of DCMC and gelatin was estimated to be 50.31 ± 2.65. The maximum swelling capacity of the hydrogel in aqueous medium was around 74 g/g at pH 10.0 and 37 °C with equilibrium swelling attained in three hours and the compressive strength of the hydrogel was found to be 55 ± 0.76 kPa at 60% strain. The biodegradation studies confirmed 82.67% degradation of the hydrogel sample within a period of twelve weeks. Further, the hydrogel was evaluated as a bio adsorbent for the removal of hazardous dyes, namely Rhodamine B (RhB) and Methyl Violet (MV) from water due to its decent swelling capacity and good mechanical strength. The maximum percentage of RhB and MV removed from the respective dye solutions using DCMC-cl-G hydrogel was 96.5% and 90% at pH 6.0, respectively. Both dyes followed Langmuir adsorption isotherm, which considers monolayer adsorption of adsorbate over adsorbent, with a pseudo-second-order kinetic model.

Graphic abstract

An environment friendly hybrid hydrogel of dialdehyde carboxymethyl cellulose was fabricated by crosslinking with gelatin. The use of gelatin improved the compressive strength and thermal characteristics of the hydrogel. It was utilized for the efficient removal of hazardous dyes such as Rhodamine B and Methyl violet. The biodegradation of the hydrogel was achieved up to 82.67% for a period of twelve weeks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. (a) Akan J C, Abdulrahman F I, Ayodele J T and Ogugbuaja V 2009 Impact of Tannery and Textile Effluent on the Chemical Characteristics of Challawa River, Kano State, Nigeria Aust. J. Basic Appl. Sci. 3 1933; (b) Lotfy S and Abou Taleb M F 2018 Free radical polymerization of polyvinyl butyral/polyethylene glycol diacrylate copolymer for removing organic dyes from waste water Polym. Bull. 75 2865; and (c) Shah M P 2016 Industrial Wastewater Treatment: A Challenging Task in the Industrial Waste Management Adv. Recycl. Waste Manage.: Open Access 2 115

  2. Capar G, Yetis U and Yilmaz L 2006 Membrane based strategies for the pre-treatment of acid dye bath wastewaters J. Hazard. Mater. 135 423; (b) Zahrim A Y, Tizaoui C and Hilal N 2011 Coagulation with polymers for nanofiltration pre-treatment of highly concentrated dyes: A review Desalination 266 1; (c) Liu C H, Wu J S, Chiu H C, Suen S Y and Chu K H 2007 Removal of anionic reactive dyes from water using anion exchange membranes as adsorbers Water Res. 41 1491; and (d) Sheshmani S, Ashori A, Hasanzadeh S 2014 Removal of Acid Orange 7 from aqueous solution using magnetic graphene/chitosan: A promising nano-adsorbent Int. J. Biol. Macromol. 68 218

  3. (a) Bhatia J K, Kaith B S and Kalia S 2013 Polysaccharide Hydrogels: Synthesis, Characterization, and Applications In: Polysaccharide Based Graft Copolymers (Berlin: Springer) Ch. 7 pp. 271–290; (b) Pathania D, Verma C, Negi P, Tyagi I, Asif M, Kumar N S, Al-Ghurabi E. H, Agarwal S and Gupta V K 2018 Novel nanohydrogel based on itaconic acid grafted tragacanth gum for controlled release of ampicillin Carbohydr. Polym. 196 262; (c) Wang W B, Zhang H X, Shen J F and Ye M X 2018 Facile preparation of magnetic chitosan/poly (vinyl alcohol) hydrogel beads with excellent adsorption ability via freezing-thawing method Colloid. Surf. A 553 672; (d) Sampath S, Choudhury N A and Shukla A K 2009 Hydrogel membrane electrolyte for electrochemical capacitors J. Chem. Sci. 121 727

  4. Vadivelan V and Kumar K V 2005 Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk J. Colloid. Interf. Sci. 286 90

    Article  CAS  Google Scholar 

  5. Liu S, Kang M, Li K, Yao F, Oderinde O, Fu G and Xu L 2018 Polysaccharide-templated preparation of mechanically-tough, conductive and self-healing hydrogels Chem. Eng. J. 334 2222

    Article  CAS  Google Scholar 

  6. Monier M, Abdel-Latif D A and Ji H F 2016 Synthesis and application of photo-active carboxymethyl cellulose derivatives React. Funct. Polym. 102 137

    Article  CAS  Google Scholar 

  7. Capanema N S V, Mansur A A P, deJesus A C, Carvalho S M, de Oliveira L C and Mansur H S 2018 Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications Int. J. Biol. Macromol. 106 1218

    Article  CAS  Google Scholar 

  8. Benhalima T, Ferfera-Harrar H and Lerari D 2017 Optimization of carboxymethyl cellulose hydrogels beads generated by an anionic surfactant micelle templating for cationic dye uptake: Swelling, sorption and reusability studies Int. J. Biol. Macromol. 105 1025

    Article  CAS  Google Scholar 

  9. Cui L, Jia J, Guo Yi, Liu Y and Zhu P 2014 Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin Carbohyd. Polym. 99 31

    Article  CAS  Google Scholar 

  10. Nieuwenhove I V, Salamon A, Petersb K, Graulusa G-J, Martinsc J C, Frankeld D, Kersemanse K, Vose F D, Vlierberghea S V and Dubruela P 2016 Gelatin- and starch-based hydrogels. Part A: Hydrogel Development, characterization and coating Carbohyd. Polym. 152 129

    Article  Google Scholar 

  11. Manna P J, Mitra T, Pramanik N, Kavith V, Gnanamani A and Kundu P P 2015 Potential use of curcumin loaded carboxymethylated guar gum grafted gelatin film for biomedical applications Int. J. Biol. Macromol. 75 437

    Article  CAS  Google Scholar 

  12. Li H, Wu B, Mu C and Lin W 2011 Concomitant degradation in periodate oxidation of carboxymethyl cellulose Carbohyd. Polym. 84 881

    Article  CAS  Google Scholar 

  13. (a) Balakrishnan B, Joshi N and Banerjee R 2013 Borate aided Schiff’s base formation yields in situ gelling hydrogels for cartilage regeneration J. Mater. Chem. B 1 5564; (b) EL-Sayed N S, El-Ziaty A K, El-Meligy G, Nagieb Z A 2017 Syntheses of New Antimicrobial Cellulose Materials Based 2-((2-aminoethyl)amino)-4-aryl-6-indolylnicotinonitriles Egypt. J. Chem. 60 465

  14. Dash R, Foston M and Ragauskas A J 2013 Improving the mechanical and thermal properties of gelatin hydrogels cross-linked by cellulose nanowhiskers Carbohyd. Polym. 91 638

    Article  CAS  Google Scholar 

  15. Zheng X, Zhang Q, Liu J, Pei Y and Tang K 2013 A unique high mechanical strength dialdehyde microfibrillated cellulose/gelatin composite hydrogel with a giant network structure RSC Adv. 6 71999

    Article  Google Scholar 

  16. Sethi S, Kaith B S, Saruchi, Kumar V 2019 Fabrication and characterization of microwave assisted carboxymethyl cellulose-gelatin silver nanoparticles imbibed hydrogel: Its evaluation as dye degradation React. Funct. Polym. 142 134

    Article  CAS  Google Scholar 

  17. Hofreiter B T, Alexander B H and Wolff I A 1955 Rapid Estimation of Dialdehyde Content of Periodate Oxystarch through Quantitative Alkali Consumption Anal. Chem. 27 1930

    Article  CAS  Google Scholar 

  18. Mandal B and Ray S K 2014 Swelling, diffusion, network parameters and adsorption properties of IPN hydrogel of chitosan and acrylic copolymer Mater. Sci. Eng. C 44 132

    Article  Google Scholar 

  19. Mittal H, Mishra S B, Mishra A K, Kaith B S, Jindal R and Kalia S 2013 Preparation of poly (acrylamide-co-acrylic acid)-grafted gum and its flocculation and biodegradation studies Carbohyd. Polym. 98 397

    Article  CAS  Google Scholar 

  20. Sannino A, Demitri C and Madaghiele M. 2009 Biodegradable Cellulose-based Hydrogels: Design and Applications Materials 2 353

    Article  CAS  Google Scholar 

  21. Guilherme M R, Aouada F A, Fajarado A R, Martins A F, Paulino A T, Davi M F T, Rubira A F and Muniz E C 2015 Superabsorbent hydrogels based on polysaccharides for application in agriculture as soil conditioner and nutrient carrier: A review Eur. Polym. J. 72 365

    Article  CAS  Google Scholar 

  22. Wu S C, Chang W H, Dong G C, Chen K Y, Chen Y S, Yao C H 2011 Cell adhesion and proliferation enhancement by gelatin nanofiber scaffolds J. Bioact. Compat. Polym. 26 565

    Article  CAS  Google Scholar 

  23. Li D, Ye Y, Li D, Li X and Mu C 2016 Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings Carbohyd. Polym. 137 508

    Article  CAS  Google Scholar 

  24. Khorshidi S and Karkhaneh A 2016 A self-crosslinking tri-component hydrogel based on functionalized polysaccharides and gelatin for tissue engineering applications Mater. Lett. 164 468

    Article  CAS  Google Scholar 

  25. (a) Wang W-B, Huang D-J, Kang Y-R and Wang A-Q 2013 One-step in situ fabrication of a granular semi-IPN hydrogel based on chitosan and gelatin for fast and efficient adsorption of Cu2+ ion Colloid. Surf. B: Biointerf. 106 51; (b) Tong Y, Zhang Y, Liu Y, Cai H, Zhang W and Tan W-S 2018 POSS-enhanced thermo sensitive hybrid hydrogels for cell adhesion and detachment RSC Adv. 8 13813

  26. Tu H, Yu Y, Chen J, Shi X, Zhou J, Deng H and Du Y 2017 Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose Polym. Chem. 8 2913

    Article  CAS  Google Scholar 

  27. Zhu L, Guan C, Zhou B, Zhang Z, Yang R, Tang Y and Yang J 2017 Adsorption of Dyes onto Sodium Alginate Graft Poly(Acrylic Acidco-2-Acrylamide-2-Methyl Propane Sulfonic Acid)/ Kaolin Hydrogel Composite Polym. Polym. Compos. 25 627

    CAS  Google Scholar 

  28. (a) Gong R, Ye J J, Dai W, Yan X Y, Hu J, Hu X, Li S and Huang H 2013 Adsorptive Removal of Methyl Orange and Methylene Blue from Aqueous Solution with Finger-Citron-Residue-Based Activated Carbon Ind. Eng. Chem. Res. 52 14297; (b) Kumar N, Mittal H, Parashar V, Ray S S and Ngila J C 2016 Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel RSC Adv. 6 21929

  29. Mittal H, Maity A and Ray S S 2015 Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel Int. J. Biol. Macromol. 79 8

    Article  CAS  Google Scholar 

  30. Dumeignil F, Paul J-F and Paul S 2017 Heterogeneous Catalysis with Renewed Attention: Principles, Theories, and Concepts J. Chem. Edu. 94 675

    Article  CAS  Google Scholar 

  31. Itodo A U and Itodo H U 2010 Sorption Energies Estimation Using Dubinin-Radushkevich and Temkin Adsorption Isotherms Life Sci. J. 7 31

    Google Scholar 

  32. Fosso-Kankeu E, Mittal H, Mishra S B and Mishra A K 2015 Gum ghatti and acrylic acid based biodegradable hydrogels for the effective adsorption of cationic dyes J. Ind. Eng. Chem. 22 171

    Article  CAS  Google Scholar 

  33. Mittal H, Kumar V, Saruchi and Ray S S 2016 Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels Int. J. Biol. Macromol. 89 1

    Article  CAS  Google Scholar 

  34. Ghorai S, Sarkar A, Raoufi M, Panda A B, Schönherr H and Pal S 2016 Enhanced Removal of Methylene Blue and Methyl Violet Dyes from Aqueous Solution Using a Nanocomposite of Hydrolyzed Polyacrylamide Grafted Xanthan Gum and Incorporated Nanosilica Appl. Mater. Interf. 6 4766

    Article  Google Scholar 

  35. Mittal H, Jindal R, Kaith B S, Maity A and Ray S S 2014 Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels Carbohyd. Polym. 114 321

    Article  CAS  Google Scholar 

Download references

Acknowledgements

X-ray facility at Dr. B R Ambedkar is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sapna Sethi or Sadhika Khullar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 916 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sethi, S., Kaith, B.S., Kaur, M. et al. A hydrogel based on dialdehyde carboxymethyl cellulose–gelatin and its utilization as a bio adsorbent. J Chem Sci 132, 15 (2020). https://doi.org/10.1007/s12039-019-1700-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1700-z

Keywords

Navigation