Skip to main content
Log in

Transition metal complexes obtained from an ionic liquid-supported Schiff base: synthesis, physicochemical characterization and exploration of antimicrobial activities

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

An ionic liquid-supported Schiff base 1-{2-(2-hydroxy-5-chlorobenzylamine) ethyl}-3-methylimidazolium tetrafluoroborate and its Co(II), Ni(II), Cu(II), Mn(III), Fe(III) and Cr(III) complexes were synthesized and characterized by various analytical (elemental analysis, molar conductance and magnetic susceptibility measurements) and spectroscopic (PXRD, SEM, ESI-MS, UV-Visible, FT-IR, \(^{ 1}\hbox {H NMR}\) and \(^{13}\hbox {C-NMR}\)) methods. Based on these spectral data and spectra, tetra coordinated and hexacoordinated geometries were assigned for the synthesized metal complexes. Molar conductance of the complexes showed their (1:2) electrolytic nature. The Schiff base ligand and its complexes were screened for in vitro antimicrobial activities against some naturally available gram positive and gram negative bacteria to assess their inhibition potentials. Maximum inhibition zone was produced by the Cu(II) complex (5a) in plates of Klebsiella pneumoniae while the minimum inhibition zone was produced by in plates of Bacillus cereus.

Graphical abstract

Transition metal complexes synthesized from an ionic liquid-supported Schiff base have been characterized by various spectroscopic and analytical techniques. Based on the experimental data, it was suggested that the metal ions be coordinated by the ligand in 1:2 ratio. The complexes were explored against Gram-positive and Gram-negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anastas P T, Kirchhoff M M and Williamson T C 2001 Catalysis as a foundational pillar of green chemistry Appl. Catal. A  221 3

    Article  CAS  Google Scholar 

  2. Rogers R D and Seddon K R 2003 Ionic Liquids–Solvents of the Future? Science  302 792

    Article  Google Scholar 

  3. Sheldon R A 2012 Fundamentals of green chemistry: efficiency in reaction design Chem. Soc. Rev.  41 1437

    Article  CAS  Google Scholar 

  4. Dupont J, de Souza R F and Suarez P A Z 2002 Ionic liquid (molten salt) phase organometallic catalysis Chem. Rev.  102 3667

    Article  CAS  Google Scholar 

  5. Seddon K R 1997 Ionic liquids for clean technology J. Chem. Technol. Biotechnol.  68 351

    Article  CAS  Google Scholar 

  6. Welton T 1999 Room-temperature ionic liquids. Solvents for synthesis and catalysis Chem. Rev.  99 2071

  7. Gordon C M 2001 New developments in catalysis using ionic liquids Appl. Catal. Gen. A  222 101

    Article  CAS  Google Scholar 

  8. Jain N, Kumar A, Chauhan S and Chauhan S M S 2005 Metalloporphyrin and heteropoly acid catalyzed oxidation of C=NOH bonds in an ionic liquid: biomimetic models of nitric oxide synthase Tetrahedron  61 1015

  9. Wasserscheid P and Welton T 2008 Ionic Liquid in Synthesis \(2^{{\rm nd}}\) edn. (Weinheim: Wiley-VCH)

    Google Scholar 

  10. Zhao H and Malhotra S V 2002 Applications of Ionic Liquids in Organic Synthesis Aldrichim. Acta  35 75

    Article  CAS  Google Scholar 

  11. Endres F, Welton T and Wasserscheid P 2003 Ionic Liquids in Synthesis (Weinheim: Wiley-VCH) pp. 289-318

  12. Husum T L, Jorgensen C T, Christensen M W and Kirk O 2001 Enzyme catalysed synthesis in ambient temperature ionic liquids Biocatal. Biotransform.  19 331

    Article  CAS  Google Scholar 

  13. Kragl U, Eckstein M and Kaftzik N 2002 Enzyme catalysis in ionic liquids Curr. Opin. Biotechnol.  13 565

    Article  CAS  Google Scholar 

  14. Park S and Kazlauskas R J 2003 Biocatalysis in ionic liquids—advantages beyond green technology Curr. Opin. Biotechnol.  14 432

    Article  CAS  Google Scholar 

  15. Sheldon R A, Lau R M, Sorgedrager M J, van Rantwijk F and Seddon K R 2002 Biocatalysis in ionic liquids Green Chem.  4 147

    Article  CAS  Google Scholar 

  16. Van Rantwijk F and Sheldon R A 2007 Biocatalysis in ionic liquids Chem. Rev.  107 2757

    Article  Google Scholar 

  17. Kubisa P 2004 Application of ionic liquids as solvents for polymerization processes Prog. Polymer Sci.  29 3

    Article  CAS  Google Scholar 

  18. Carmichael A J and Haddleton D M 2003 Polymer Synthesis in Ionic Liquids (Weinheim: Wiley-VCH) pp. 319-335

    Google Scholar 

  19. Zhao H, Xia S and Ma P 2005 Use of ionic liquids as ‘green’ solvents for extractions J. Chem. Technol. Biotechnol.  80 1089

    Article  CAS  Google Scholar 

  20. Zhao H 2006 Innovative applications of ionic liquids as “green” engineering liquids Chem. Eng. Commun.  193 1660

    Article  CAS  Google Scholar 

  21. Moniruzzaman M and Goto M 2011 Ionic liquids: future solvents and reagents for pharmaceuticals J. Chem. Eng. Jpn.  44 370

    Article  CAS  Google Scholar 

  22. Siodmiak T, Marszall M P and Proszowska A 2012 Ionic liquids: a new strategy in pharmaceutical synthesis Mini-Rev. Org. Chem.  9 203

    Article  CAS  Google Scholar 

  23. Li J, Peng Y and Song G 2005 Mannich reaction catalyzed by carboxyl-functionalized ionic liquid in aqueous media Catal. Lett.  102 159

    Article  CAS  Google Scholar 

  24. Davis Jr. J H, Forrester K J T and Merrigan J 1998 Novel organic ionic liquids (OILs) incorporating cations derived from the antifungal drug miconazole Tetrahedron Lett.  49 8955

    Article  Google Scholar 

  25. Jodry J J and Mikami J K 2004 New chiral imidazolium ionic liquids: 3D-network of hydrogen bonding Tetrahedron Lett.  45 4429

    Article  CAS  Google Scholar 

  26. Fei Z, Geldbach T J, Zhao D and Dyson P J 2006 From dysfunction to bis-function: on the design and applications of functionalised ionic liquids J. Eur. Chem.  12 2122

    Article  CAS  Google Scholar 

  27. Lee S 2006 Functionalized imidazolium salts for task-specific ionic liquids and their applications Chem. Commun. 1049

  28. Kwiatkowski E and Kwiatkowski M 1986 A novel unsymmetrical quadridentate ligand 1-(\(2^\prime \)-aminophenyl)-6-methyl-2,5-diazanona-l,6-diene-8-one and its complexes with copper(II), nickel(II) and palladium(II) Inorg. Chim. Acta  117 145

    Article  CAS  Google Scholar 

  29. Holm R H, Everett G W Jr and Chakravorty A 1966 Metal complexes of Schiff bases and \(\upbeta \)-ketoamines Inorg. Chem.  7 83

    CAS  Google Scholar 

  30. Daneshvar N, Entezami A A, Khandar A A and Saghatforoush L A 2003 Synthesis and characterization of copper(II) complexes with dissymmetric tetradentate Schiff base ligands derived from aminothioether pyridine, Crystal structures of \([\text{ Cu(pytIsal) }]\text{ ClO }_{4}\cdot 0.5\text{ CH }_{3}\text{ OH }\) and \([\text{ Cu(pytAzosal) }]\text{ ClO }_{4}\) Polyhedron  22 1437

    Article  CAS  Google Scholar 

  31. Boghaei D M and Mohebi S 2002 Non-symmetrical tetradentate vanadyl Schiff base complexes derived from 1,2-phenylene diamine and 1,3-naphthalene diamine as catalysts for the oxidation of cyclohexene Tetrahedron  58 5357

    Article  CAS  Google Scholar 

  32. Song G, Cai Y and Peng Y 2005 Amino-functionalized ionic liquid as a nucleophilic scavenger in solution phase combinatorial synthesis J. Comb. Chem.  7 561

    Article  CAS  Google Scholar 

  33. Su P W, Yang C H, Yang J F, Su P Y and Chuang L Y 2015 Antibacterial activities and antibacterial mechanism of polygonum cuspidatum extracts against nosocomial drug-resistant pathogens Molecules  20 11119

    Article  CAS  Google Scholar 

  34. Yıldız M, Kılıc Z and Hökelek T 1998 Intramolecular hydrogen bonding and tautomerism in Schiff bases, Structure of 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane J. Mol. Struct.  441 1

    Article  Google Scholar 

  35. Yeap G -Y, Ha S -T, Ishizawa N, Suda K, Boey P –L and Mahmood W A K 2003 Synthesis, crystal structure and spectroscopic study of parasubstituted 2-hydroxy-3-methoxybenzalideneanilines J. Mol. Struct.  658 87

    Article  CAS  Google Scholar 

  36. Abdel-Latif S A, Hassib H B and Issa Y M 2007 Studies on some salicylaldehyde Schiff base derivatives and their complexes with Cr(III), Mn(II), Fe(III), Ni(II) and Cu(II) Spectrochim. Acta Part.  67 950

    Article  CAS  Google Scholar 

  37. Wang J, Pei Y, Zhao Y and Hu Z 2005 Recovery of amino acids by imidazolium based ionic liquids from aqueous media Green Chem. 196

  38. Han D and Row K H 2010 Recent application of ionic liquids in separation technology Molecules  15 2405

    Article  CAS  Google Scholar 

  39. Kohawole G A and Patel K S 1981 The stereochemistry of oxovanadium(IV) complexes derived from salicylaldehyde and polymethylenediamines J. Chem. Soc. Dalton Trans.  6 1241

    Article  Google Scholar 

  40. Mahmoud M A, Zaitone S A, Ammar A M and Sallam S A 2016 Synthesis, structure and antidiabetic activity of chromium(III) complexes of metformin Schiff-bases J. Mol. Struct.  1108 60

    Article  CAS  Google Scholar 

  41. Adams D M 1967 Metal-Ligand and Related Vibrations: A Critical Survey of the Infrared and Raman Spectra of Metallic and Organometallic Compounds (London: Edward Arnold Publishers)

    Google Scholar 

  42. Adly O M I, Taha A and Fahmy S A 2013 Synthesis, spectral characterization, molecular modeling and antimicrobial activity of new potentially \(\text{ N }_{2}\text{ O }_{2}\) Schiff base complexes J. Mol. Struct.  1054 239

    Article  Google Scholar 

  43. Kar N K, Singh M K and Lal R A 2012 Synthesis and spectral studies on heterobimetallic complexes of manganese and ruthenium derived from bis[N-(2-hydroxynaphthalen-1-yl)methylene]oxaloyldihydrazide Arabian J. Chem.  5 67

    Article  CAS  Google Scholar 

  44. Li B, Li Y Q, Zheng W J and Zhou M Y 2009 Synthesis of ionic liquid supported Schiff bases Arkivoc.  11 165

    Google Scholar 

  45. Silverstein R M 2005 Spectrometric Identification of Organic Compounds  \(7^{{\rm th}}\) edn. (Hoboken: John Wiley & Sons)

    Google Scholar 

  46. Peral F and Gallego E 1997 Self-association of imidazole and its methyl derivatives in aqueous solution: a study by ultraviolet spectroscopy J. Mol. Struct.  415 187

    Article  CAS  Google Scholar 

  47. Shakir M, Nasam O S M, Mohamed A K and Varkey S P 1996 Transition metal complexes of 13–14-membered tetraazamacrocycles: synthesis and characterization Polyhedron  15 1283

    Article  CAS  Google Scholar 

  48. Chem L S and Cummings S C 1978 Synthesis and characterization of cobalt(II) and some nickel(II) complexes with N,N’-ethylenebis(p-X-benzoylacetone iminato) and N,N’-ethylenebis(p-X-benzoylmonothioacetone iminato) ligands Inorg. Chem.  17 2358

    Article  Google Scholar 

  49. Del Paggio A A and McMillin D R 1983 Substituent effects and the photoluminescence of Cu(PPh\(_3\))\(_2\)(NN)\(_+\) systems Inorg. Chem.  22 691

    Article  Google Scholar 

  50. Natarajan C, Tharmaraj P and Murugesan R 1992 In situ synthesis and spectroscopic studies of copper(II) and nickel(II) complexes of 1-hydroxy-2-naphthylstyrylketoneimines J. Coord. Chem.  26 205

    Article  CAS  Google Scholar 

  51. Dehghanpour S, Bouslimani N, Welter R and Mojahed F 2007 Synthesis, spectral characterization, properties and structures of copper(I) complexes containing novel bidentate iminopyridine ligands Polyhedron  26 154

    Article  CAS  Google Scholar 

  52. Lever A B P 1984 Inorganic Electronic Spectroscopy \(2^{{\rm nd}}\) edn. (Amsterdam: Elsevier)

    Google Scholar 

  53. Ray S, Konar S, Jana A, Das K, Dhara A, Chatterjee S and Kar S K 2014 Syntheses, crystal structure, spectroscopic and photoluminescence studies of mononuclear copper(II), manganese(II), cadmium(II), and a 1D polymeric Cu(II) complexes with a pyrimidine derived Schiff base ligand J. Mol. Struct.  1058 213

    Article  CAS  Google Scholar 

  54. Frunza L, Zgura I, Dittmar A and Fricke R 2005 Embedding Jacobsen manganese(III) salen complex into nanoporous molecular sieves: spectroscopic characterisation of host–guest interactions Adv. Mater.  7 2141

    CAS  Google Scholar 

  55. Kulkarni A D, Patil S A and Badami P S 2009 Electrochemical properties of some transition metal complexes: synthesis, characterization and in-vitro antimicrobial studies of Co(II), Ni(II), Cu(II), Mn(II) and Fe(III) complexes Int. J. Electrochem. Sci. 4 717

    CAS  Google Scholar 

  56. Dey K and Chakraborty K 2000 Synthesis and characterization of some chromium(III) complexes with N, S, O–donor thiohydrazones Indian J. Chem. 39 1140

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Departmental Special Assistance Scheme under the University Grants Commission, New Delhi (SAP-DRS-III, NO.540/12/DRS/2013) for financial support and SAIF, NEHU, Guwahati, India for \(^{13}\hbox {CNMR}\), \(^{1}\hbox {H NMR}\), ESI-MS and elemental analysis. We are thankful to USIC, NBU, West Bengal, India and Department of Chemistry, Sikkim University, Sikkim, India for SEM and PXRD spectra respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Saha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, B., Bhattacharya, M. & Saha, S. Transition metal complexes obtained from an ionic liquid-supported Schiff base: synthesis, physicochemical characterization and exploration of antimicrobial activities. J Chem Sci 131, 19 (2019). https://doi.org/10.1007/s12039-019-1593-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-019-1593-x

Keywords

Navigation