Skip to main content
Log in

Morphology-controlled Pd nanocrystals as catalysts in tandem dehydrogenation-hydrogenation reactions

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

A facile synthetic protocol was used to prepare morphology controlled Pd nanocrystals with spherical and cubic shapes of different sizes. Carbon-supported catalysts were prepared from the as-synthesised nanocrystals and their catalytic ability in a tandem dehydrogenation/hydrogenation reaction composed by the dehydrogenation of ammonia borane, serving as a hydrogen source, and the subsequent hydrogenation of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) was assessed. The catalytic performance was strongly dependent on the nanocrystals morphology and the spherical nanoparticles with an average size of 5.5 nm displayed the best performance among investigated.

GRAPHICAL ABSTRACT

Synopsis: Colloidal synthesis was used to prepare morphology-controlled Pd nanocrystals with spherical and cubic shapes and different sizes. They were loaded on a carbon support and tested in a tandem dehydrogenation/hydrogenation reaction based on the hydrogen production from \(\hbox {NH}_{3}\hbox {BH}_{3}\) and hydrogenation of 4-nitrophenol. The catalytic activity was dependent on the nanocrystal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. You H, Yang S, Ding B, and Yang H 2013 Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications Chem. Soc. Rev.  42 2880

    Article  CAS  Google Scholar 

  2. Teranishi T and Miyake M 1998 Size Control of Palladium Nanoparticles and Their Crystal Structures Chem. Mater.  10 594

    Article  CAS  Google Scholar 

  3. Somorjai G A and Park J Y 2008 Colloid science of metal nanoparticle catalysts in 2D and 3D structures. Challenges of nucleation, growth, composition, particle shape, size control and their influence on activity and selectivity Top. Catal.  49 126

    Article  CAS  Google Scholar 

  4. Jia C J and Schüth F 2011 Colloidal metal nanoparticles as a component of designed catalyst Phys. Chem. Chem. Phys.  13 2457

    Article  CAS  Google Scholar 

  5. Izadi N, Rashidi A M, Izadi A, Emami S, Samimi V and Varmazyar H 2017 Selective hydrogenation of 4-carboxybenzaldehyde over palladium catalysts supported with different structural organization Int. J. Hydrogen Energy  42 2970

    Article  CAS  Google Scholar 

  6. Manna J, Akbayrak S and Özkar S 2017 Palladium(0) nanoparticles supported on polydopamine coated Fe3O4 as magnetically isolable, highly active and reusable catalysts for hydrolytic dehydrogenation of ammonia borane Appl. Catal. B Environ.  208 102035

    Article  Google Scholar 

  7. Navlani-García M, Martis M, Lozano-Castelló D, Cazorla-Amorós D, Mori K and Yamashita H 2015 Investigation of Pd nanoparticles supported on zeolites for hydrogen production from formic acid dehydrogenation Catal. Sci. Technol.  5 364

    Article  Google Scholar 

  8. Navlani-García M, Mori K, Nozaki A, Kuwahara Y and Yamashita H 2016 Investigation of Size Sensitivity in the Hydrogen Production from Formic Acid over Carbon-Supported Pd Nanoparticles ChemistrySelect  1 1879

    Article  Google Scholar 

  9. García-Aguilar J, Navlani-García M, Berenguer-Murcia A, Mori K, Kuwahara Y, Yamashita H and Cazorla-Amoros D 2016 Evolution of the PVP-Pd surface interaction in nanoparticles through the case study of formic acid decomposition Langmuir  32 12110

    Article  Google Scholar 

  10. Miguel-García I, Navlani-García M, García-Aguilar J, Berenguer-Murcia A, Lozano-Castelló D and Cazorla-Amorós D 2015 Capillary microreactors based on hierarchical SiO\(_2\) monoliths incorporating noble metal nanoparticles for the Preferential Oxidation of CO Chem. Eng. J.  275 74

    Article  Google Scholar 

  11. Navlani-García M, Miguel-García I, Berenguer-Murcia A, Lozano-Castelló D, Cazorla-Amorós D and Yamashita H 2016 Pd/Zeolite-based catalysts for the Preferential CO Oxidation reaction: ion-exchange, Si/Al and structure effect Catal. Sci. Technol.  6 2623

    Article  Google Scholar 

  12. Arciniega Cano O, Rodríguez González C A, Hernández Paz J F, Amezaga Madrid P, García Casillas P E, Martínez Hernández A L and Martínez Pérez C A 2017 Catalytic activity of palladium nanocubes/multiwalled carbon nanotubes structures for methyl orange dye removal Catal. Today  282 168

    Article  CAS  Google Scholar 

  13. Chen Y H, Hung H H and Huang M H 2009 Seed-mediated synthesis of palladium nanorods and branched nanocrystals and their use as recyclable suzuki coupling reaction catalysts J. Am. Chem. Soc.  131 9114

    Article  CAS  Google Scholar 

  14. Bharti R, Bal Reddy C, Kumar D and Das P 2017 Supported palladium nanoparticle-catalysed Suzuki-Miyaura cross-coupling approach for synthesis of aminoarylbenzosuberene analogues from natural precursor Appl. Organomet. Chem.  DOI:10.1002/aoc.3749

  15. Fu W, Zhang Z, Zhuang P, Shen J and Ye M 2017 One-pot hydrothermal synthesis of magnetically recoverable palladium/reduced graphene oxide nanocomposites and its catalytic applications in cross-coupling reactions J. Colloid Interface Sci.  497 83

    Article  CAS  Google Scholar 

  16. Lim B, Jiang M, Tao J, Camargo P C H, Zhu Y and Xia Y 2009 Shape-controlled synthesis of Pd nanocrystals in aqueous solutions Adv. Funct. Mater.  19 189

    Article  CAS  Google Scholar 

  17. Xiao C, Ding H, Shen C, Yang T, Hui C and Gao H J 2009 Shape-controlled synthesis of palladium nanorods and their magnetic properties J. Phys. Chem. C  113 13466

    Article  CAS  Google Scholar 

  18. Hu Y, Yang X, Cao S, Zhou J, Wu Y, Han Y, Yan Z and Zheng M 2017 Effect of the dispersants on Pd species and catalytic activity of supported palladium catalyst Appl. Surf. Sci.  400 148

    Article  CAS  Google Scholar 

  19. Matsumura S, Sato R, Nakaoka S, Yokotani W, Murakami Y, Kataoka Y and Ura Y 2017 Palladium-Catalyzed Aerobic Synthesis of Terminal Acetals from Vinylarenes Assisted by \(\uppi \)-Acceptor Ligands ChemCatChem  9 751

    Article  CAS  Google Scholar 

  20. Skhiri A, Salem R B, Soulé J F and Doucet H 2017 Unprecedented Access to \(\upbeta \)-Arylated Selenophenes through Palladium-Catalysed Direct Arylation Chem. - A Eur. J.  23 2788

    Article  CAS  Google Scholar 

  21. Zhang W, Wang F, Li X, Liu Y, Liu Y and Ma J 2017 Fabrication of hollow carbon nanospheres introduced with Fe and N species immobilized palladium nanoparticles as catalysts for the semihydrogenation of phenylacetylene under mild reaction conditions Appl. Surf. Sci.  404 398

    Article  CAS  Google Scholar 

  22. Liu G, Liu S, Liu S, Yu S, Li L, Liu F, Xie C and Song X 2017 Hydrogenation of 2-Ethylhexenal Using Supported-Metal Catalysts for Production of 2-Ethylhexanol Catal. Lett  147 987

    Article  CAS  Google Scholar 

  23. Li N, Liu M, Yang B, Shu W, Shen Q, Liu M and Zhou J 2017 Enhanced Photocatalytic Performance toward CO2 Hydrogenation over Nanosized TiO\(_2\)-Loaded Pd under UV Irradiation J. Phys. Chem. C  121 2923

    Article  CAS  Google Scholar 

  24. Chen L, Zhang D and Ge G 2015 A green approach for efficient p-nitrophenol hydrogenation catalyzed by a Pd-based nanocatalyst Catal. Commun.  66 95

    Article  CAS  Google Scholar 

  25. Komatsu T and Hirose T 2004 Gas phase synthesis of para-aminophenol from nitrobenzene on Pt/zeolite catalysts Appl. Catal. A Gen.  276 95

    Article  CAS  Google Scholar 

  26. Zhao S, Li Q, Li F and Liang Z 2017 Synthesis of spinel CuCo2O4 nanoparticles and its application in p-nitrophenol reduction J. Sol-Gel Sci. Technol.  81 544

    Article  CAS  Google Scholar 

  27. Park H, Reddy D A, Kim Y, Lee S, Ma R, Lim M and Kim T K 2017 Hydrogenation of 4-nitrophenol to 4-aminophenol at room temperature: Boosting palladium nanocrystals efficiency by coupling with copper via liquid phase pulsed laser ablation Appl. Surf. Sci.  401 314

    Article  CAS  Google Scholar 

  28. Navlani-García M, Miguel-García I, Berenguer-Murcia A, Lozano-Castelló D Cazorla-Amorós D and Yamashita H 2016 Pd/zeolite-based catalysts for the preferential CO oxidation reaction: Ion-exchange, Si/Al and structure effect Catal. Sci. Technol.  6 2623

    Article  Google Scholar 

  29. Kim S, Lee D W and Lee K Y 2014 Direct synthesis of hydrogen peroxide from hydrogen and oxygen over single-crystal cubic palladium on silica catalysts J. Mol. Catal. A Chem.  383–384 64

    Article  Google Scholar 

  30. Mori K, Verma P, Hayashi R, Fuku K and Yamashita H 2015 Color-Controlled Ag Nanoparticles and Nanorods within Confined Mesopores: Microwave-Assisted Rapid Synthesis and Application in Plasmonic Catalysis under Visible-Light Irradiation Chem. - A Eur. J.  21 11885

    Article  CAS  Google Scholar 

  31. Gao D, Zhang X, Dai X, Qin Y, Duan A, Yu Y, Zhuo H, Zhao H, Zhang P, Jiang Y, Li J and Z. Zhao 2016 Morphology-selective synthesis of active and durable gold catalysts with high catalytic performance in the reduction of 4-nitrophenol Nano Res.  9 3099

    Article  CAS  Google Scholar 

  32. Sing K S W, Everett D H, Haul R a W, Moscou L, Pierotti R a, Rouquérol J and Siemieniewska T 1982 International union of pure commission on colloid and surface chemistry including catalysis * reporting physisorption data for gas / solid systems with Special Reference to the Determination of Surface Area and Porosity Pure Appl. Chem.  54 2201

    Article  Google Scholar 

  33. Li J, Zhou P, Li F, Ma J, Liu Y, Zhang X, Huo H, Jin J and Ma J 2016 Shape-controlled synthesis of Pd polyhedron supported on polyethyleneimine-reduced graphene oxide for enhancing the efficiency of hydrogen evolution reaction J. Power Sources  302 343

    Article  CAS  Google Scholar 

  34. Jin M, Liu H, Zhang H, Xie Z, Liu J and Xia Y 2011 Synthesis of Pd nanocrystals enclosed by \(\{100\}\) facets and with sizes \(<10\) nm for application in CO oxidation Nano Res.  4 83

  35. Narayan T C, Baldi A, Koh A L, Sinclair R and Dionne J A 2016 Reconstructing solute-induced phase transformations within individual nanocrystals Nat. Mater.  15 1

    Article  Google Scholar 

  36. Sreedhala S, Sudheeshkumar W and Vinod C P 2016 CO oxidation on large high-index faceted Pd nanostructures J. Catal.  337 138

    Article  CAS  Google Scholar 

  37. Zheng W, Qu J, Hong X, Tedsree K and Tsang S C E 2015 Probing the Size and Shape Effects of Cubic- and Spherical-Shaped Palladium Nanoparticles in the Electrooxidation of Formic Acid ChemCatChem  7 3826

    Article  CAS  Google Scholar 

  38. Niu W, Zhang L and Xu G 2010 Shape-controlled synthesis of single-crystalline palladium nanocrystals ACS Nano  4 1987

    Article  CAS  Google Scholar 

  39. Collins G, Schmidt M, McGlacken G P, O’Dwyer C and Holmes J D 2014 Stability, oxidation, and shape evolution of PVP-capped Pd nanocrystals J. Phys. Chem. C  118 6522

    Article  CAS  Google Scholar 

  40. Navlani-García M, Miguel-García I, Berenguer-Murcia A, Lozano-Castelló D, Cazorla-Amorós D and Yamashita H 2016 Pd/zeolite-based catalysts for the preferential CO oxidation reaction: ion-exchange, Si/Al and structure effect Catal. Sci. Technol  6 2623

    Google Scholar 

  41. Liu Z, Shamsuzzoha M, Ada E T, Reichert W M and Nikles D E 2007 Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts J. Power Sources  164 472

    Article  CAS  Google Scholar 

  42. Rioux R M, Song H, Hoefelmeyer J D, Yang P and Somorjai G A 2005 High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica J. Phys. Chem. B  109 2192

    Article  CAS  Google Scholar 

  43. Gao D, Zhou H, Wang J, Miao S, Yang F, Wang G, Wang J and Bao X 2015 Size-Dependent Electrocatalytic Reduction of \(\text{ CO }_{2}\) over Pd Nanoparticles J. Am. Chem. Soc.  137 4288

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present work was partially supported by Grants-in-Aid for Scientific Research (Nos. 26220911, 25289289, 26630409 and 26620194) from the Japan Society for the Promotion of Science (JSPS) and MEXT. We acknowledge Dr. Eiji Taguchi and Prof. H. Yasuda at the Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, for their assistance with the TEM measurements. KM, YK and HY thank MEXT program “Elements Strategy Initiative to Form Core Research Center”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiromi Yamashita.

Additional information

Special Issue on Recent Trends in the Design and Development of Catalysts and their Applications.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 313 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navlani-García, M., Verma, P., Mori, K. et al. Morphology-controlled Pd nanocrystals as catalysts in tandem dehydrogenation-hydrogenation reactions. J Chem Sci 129, 1695–1703 (2017). https://doi.org/10.1007/s12039-017-1370-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1370-7

Keyword

Navigation