Skip to main content
Log in

DFT analysis of the nucleophilicity of substituted pyridines and prediction of new molecules having nucleophilic character stronger than 4-pyrrolidino pyridine

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Some commonly used 3-substituted, 4-substituted and 3,4,5-substituted pyridines were examined using DFT to predict the nucleophilicity behavior based on four different methods known in the literature. HOMO-LUMO energy calculations were done using DFT/B3LYP/6-311G + (d,p) level of theory. To establish the most suitable nucleophilicity scale for all the ranges of pyridines covered herein, either Hammett substituent constant (σ) or experimental nucleophilicity values were computed. On the basis of this study, some new 4-substituted pyridines with enhanced nucleophilicity have been proposed. Nucleophilic behaviour of a few predicted molecules was found to be better than that of 4-pyrrolidino pyridine.

Four methods were applied for predicting nucleophilicity of substituted pyridines. Good linear regression coefficient was achieved particularly for 4-substituted pyridines. Based on the outcome of the study, some new molecules having nucleophilic character stronger than 4-pyrrolidino pyridine are predicted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Ramsay W 1876 Phil. Mag. 2 269

    Article  Google Scholar 

  2. Wu W, Kong H, Li H, Ho Y, Gao Y, Hao J, Murphy M B, Lam M H, Wong K and Lee C 2011 Eur. J. Org. Chem. 26 5054

    Article  Google Scholar 

  3. Wu J, Kang S, Song B, Hu D, He M, Jin L and Yang S 2012 Chem. Central J. 62 8

    Google Scholar 

  4. Di X, Liu Y, Liu Y, Yu X, Xiao H, Tian X and Gao R 2007 Pesticide Biochem. Physiol. 89 81

    Article  CAS  Google Scholar 

  5. Dorn F, Pfiffner A and Schlageter M 1991 ACS Symposium Series 443 506

    Article  CAS  Google Scholar 

  6. Lee L F, Stikes G L, Normansell J E, Molyneaux J M, Sing L Y L, Chupp J P, Parrish S K and Kaufmann J E 1991 ACS Symposium Series 443 195

    Article  CAS  Google Scholar 

  7. Peine G, Hoffmann P, Seifert G and Schilling G 1985 Biochem. Physiol. Pflanzen 180 1

    Article  CAS  Google Scholar 

  8. Harris R L N, Huppatz J L, Phillips J N and Teitei T 1979 In Advances in Pesticide Science H Geissbühler, G T Brooks and P C Kearney (Eds.) (Oxford: Pergamon) p. 99

  9. Willand-Charnley R, Fisher T J, Johnson B M and Dussault P H 2012 Org. Lett. 14 2242

    Article  CAS  Google Scholar 

  10. Zhang Y, Zhang Y, Sun Y L, Du X, Shi J Y, Wang W D and Wang W 2012 Chem. Eur. J. 18 6328

    Article  CAS  Google Scholar 

  11. Ko K, Nakano K, Watanabe S, Ichikawa Y and Kotsuki H 2009 Tetrahedron Lett. 50 4025

    Article  CAS  Google Scholar 

  12. Xu X, Tang Z, Wang Y, Luo S, Cun L and Gong L 2007 J. Org. Chem. 72 9905

    Article  CAS  Google Scholar 

  13. List B 2007 Chem. Rev. 107 5413

    Article  CAS  Google Scholar 

  14. Cheong P H -Y, Legault C Y, Um J M, Cȩlebi-Ołcu̧m N and Houk K N 2011 Chem. Rev. 111 5042

    Article  CAS  Google Scholar 

  15. De Rycke N, Couty F and David O R P 2011 Chem. Eur. J. 17 12852

    Article  CAS  Google Scholar 

  16. Geerlings P, De Proft F and Langenaeker W 2003 Chem. Rev. 103 1793

    Article  CAS  Google Scholar 

  17. Ingold C K 1934 Chem. Rev. 15 225

    Article  CAS  Google Scholar 

  18. Swain C G and Scott C B 1953 J. Am. Chem. Soc. 75 141

    Article  CAS  Google Scholar 

  19. Edwards J O 1954 J. Am. Chem. Soc. 76 1540

    Article  CAS  Google Scholar 

  20. Edwards J O and Pearson R G 1962 J. Am. Chem. Soc. 84 16

    Article  CAS  Google Scholar 

  21. Bunnett J F 1963 Ann. Rev. Phys. Chem. 14 271

    Article  CAS  Google Scholar 

  22. Pearson R G, Sobel H and Songstad J 1968 J. Am. Chem. Soc. 90 319

    Article  CAS  Google Scholar 

  23. Legon A C and Millen D J 1987 J. Am. Chem. Soc. 109 356

    Article  CAS  Google Scholar 

  24. Legon A C and Millen D J 1987 Acc. Chem. Res. 20 39

    Article  CAS  Google Scholar 

  25. Brotzel F, Kempf B, Singer T, Zipse H and Mayr H 2007 Chem. Eur. J. 13 336

    Article  CAS  Google Scholar 

  26. De Rycke N, Berionni G, Couty F, Mayr H, Goumont R and David O R P 2011 Org. Lett. 13 530

    Article  CAS  Google Scholar 

  27. Campodonico P, Santos J G, Andres J and Contreras R 2004 J. Phys. Org. Chem. 17 273

    Article  CAS  Google Scholar 

  28. Contreras R, Andres J, Safont V S, Campodonico P and Santos J G 2003 J. Phys. Chem. A 107 5588

    Article  CAS  Google Scholar 

  29. Chattaraj P K and Maiti B 2001 J. Phys. Chem. A 105 169

    Article  CAS  Google Scholar 

  30. Pratihar S and Roy S 2010 J. Org. Chem. 75 4957

    Article  CAS  Google Scholar 

  31. Pratihar S and Roy S 2011 Organometallics 30 3257

    Article  CAS  Google Scholar 

  32. Domingo L R and Pérez P 2011 Org. Biomol. Chem. 9 7168

    Article  CAS  Google Scholar 

  33. Campodónico P R and Aizman A 2006 Chem. Phys. Lett. 422 204

    Article  Google Scholar 

  34. Deuri S and Phukan P 2012 Comput. Theor. Chem. 980 49

    Article  CAS  Google Scholar 

  35. Soliman S M 2012 Comput. Theor. Chem. 994 105

    Article  CAS  Google Scholar 

  36. Ess D H, Jones G O and Houk K N 2006 Adv. Synth. Catal. 348 2337

    Article  CAS  Google Scholar 

  37. Chattaraj P K, Sarkar U and Roy D R 2006 Chem. Rev. 106 2065

    Article  CAS  Google Scholar 

  38. Chattaraj P K and Roy D R 2007 Chem. Rev. 107 PR46

    Article  CAS  Google Scholar 

  39. Chattaraj P K, Giri S and Duley S 2011 Chem. Rev. 111 PR43

    Article  Google Scholar 

  40. Parr R G and Pearson R G 1983 J. Am. Chem. Soc. 105 7512

    Article  CAS  Google Scholar 

  41. Parr R G, Von Szentpaly L and Liu S 1999 J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  42. Parr R G, Donnelly R A, Levy M and Palke W E 1978 J. Chem. Phys. 68 3801

    Article  CAS  Google Scholar 

  43. Gázquez J L, Cedillo A and Vela A 2007 J. Phys. Chem. A 111 1966

    Article  Google Scholar 

  44. Domingo L R, Chamorro E and Perez P 2008 J. Org. Chem. 73 4615

    Article  CAS  Google Scholar 

  45. Kohn W and Sham L J 1965 Phys. Rev. 140 1133

    Article  Google Scholar 

  46. Becke A D 1993 J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  47. Lee C, Yang W and Parr R G 1988 Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  48. Cohen A, Mori-Sánchez P and Yang W 2012 Chem. Rev. 112 289

    Article  CAS  Google Scholar 

  49. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Zakrzewski V G, Montgomery J A, Stratmann R E, Burant J C, Dapprich S, Millam J M, Daniels A D, Kudin K N, Strain M C, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson G A, Ayala P Y, Cui Q, Morokuma K, Malick D K, Rabuck A D, Raghavachari K, Foresman J B, Cioslowski J, Ortiz J V, Baboul A G, Stefanov B B, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin R L, Fox D J, Keith T, Al- Laham M A, Peng C Y, Nanayakkara A, Gonzalez C, Challacombe M, Gill P M W, Johnson B, Chen W, Wong M W, Andres J L, Gonzalez C, Head Gordon M, Replogle E S and Pople J A 2004 GAUSSIAN 03, Revision E.01, (Gaussian Inc.: Wallingford, CT)

  50. Swain C G, Swain M S, Powell A L and Alunni S 1983 J. Am. Chem. Soc. 105 502

    Article  CAS  Google Scholar 

  51. Um I -H, Lee E -J and Jeon S -E 2002 J. Phys. Org. Chem. 15 561

    Article  CAS  Google Scholar 

  52. Kim Y, Cramer C J and Truhlar D G 2009 J. Phys. Chem. A 113 9109

    Article  CAS  Google Scholar 

  53. Smith M B and March J 2007 In Advanced Organic Chemistry: Reactions, Mechanism and Structure 6 th edn., (Hoboken- New Jersey: John Wiley)

Download references

Acknowledgements

Financial support from UGC (Grant No. 41-206/2012/ SR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PRODEEP PHUKAN.

Additional information

Supplementary Information (SI)

Additional information pertaining to leave-one-out correlation and regression analysis by distribution of molecules into training and test sets is available in Supporting Information at www.ias.ac.in/chemsci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 315 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DEKA, K., PHUKAN, P. DFT analysis of the nucleophilicity of substituted pyridines and prediction of new molecules having nucleophilic character stronger than 4-pyrrolidino pyridine. J Chem Sci 128, 633–647 (2016). https://doi.org/10.1007/s12039-016-1057-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-016-1057-5

Keywords

Navigation