Skip to main content
Log in

Synthesis and characterization of dodecahedral cerium(IV) and gadolinium(III) complexes with a tetradentate Schiff Base

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Reactions of CeCl3⋅6H2O and Gd(NO3)3⋅5H2O with biacetyl bis(benzoylhydrazone) (H2babh) and KOH in 1:2:2 mole ratio in methanol afford the complexes [Ce(babh)2] (1) and [Gd(babh)(Hbabh)]⋅H2O (2⋅H2O), respectively in good yields. Characterization of the complexes has been performed with the help of elemental analysis, magnetic susceptibility, spectroscopic (IR, UV-Vis, EPR and NMR) and X-ray crystallographic measurements. 1 is diamagnetic and NMR active, while 2⋅H2O is paramagnetic (μ eff = 8.03 μ B at 300 K) and EPR active. The complexes crystallize as 1⋅CH2Cl2 and 2⋅H2O. X-ray structures show that the metal centre in each of 1 and 2 is in a distorted dodecahedral N4O4 coordination sphere assembled by two meridionally spanning ONNO-donor ligands. Self-assembly of 1⋅CH2Cl2 via intermolecular C−H⋯N and C−H⋯Cl hydrogen bonds and π- π interactions provides one-dimensional ‘ladder’ type structure. On the other hand, 2⋅H2O assembles into a two-dimensional ‘sheet’ like network through intermolecular N−H⋯O and O−H⋯N hydrogen bonds.

Two octacoordinated complexes [Ce(babh)2] and [Gd(babh)(Hbabh)] (H2babh = biacetyl bis(benzoylhydrazone)) are reported. They are characterized by microanalytical, crystallographic, spectroscopic and magnetic measurements. The meridional ONNO-donor ligands assemble a distorted dodecahedral N4O4 coordination sphere in each complex. Selfassembly of the solvated complexes via intermolecular non-covalent interactions generates 1D ladder and 2D sheet structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Chart 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Parker D, Dickins R S, Puschmann H, Crossland C and Howard J A K 2002 Chem. Rev. 102 1977

    Article  CAS  Google Scholar 

  2. Cotton S A 2005 C. R. Chimie 8 129

    Article  CAS  Google Scholar 

  3. Tsukube H, Shinoda S and Tamiaki H 2002 Coord. Chem. Rev. 226 227

    Article  CAS  Google Scholar 

  4. Carr R, Evans N H and Parker D 2012 Chem. Soc. Rev. 41 7673

    Article  CAS  Google Scholar 

  5. Hussain A and Chakravarty A R 2012 J. Chem. Sci. 124 1327

    Article  CAS  Google Scholar 

  6. dos Santos C M G, Harte A J, Quinn S J and Gunnlaugsson T 2008 Coord. Chem. Rev. 252 2512

    Article  CAS  Google Scholar 

  7. Brunet E, Juanes O and Rodriguez-Ubis J C 2007 Curr. Chem. Biol. 1 11

    CAS  Google Scholar 

  8. Faulkner S, Pope S J A and Burton-Pye B P 2005 Appl. Spectrosc. Rev. 40 1

    Article  CAS  Google Scholar 

  9. Armelaoa L, Quici S, Barigelletti F, Accorsi G, Bottaro G, Cavazzini M and Tondello E 2010 Coord. Chem. Rev. 254 487

    Article  Google Scholar 

  10. Binnemans K 2009 Chem. Rev. 109 4283

    Article  CAS  Google Scholar 

  11. Feng J and Zhang H 2013 Chem. Soc. Rev. 42 387

    Article  CAS  Google Scholar 

  12. Sessoli R and Powell A K 2009 Coord. Chem. Rev. 253 2328

    Article  CAS  Google Scholar 

  13. Luzon J and Sessoli R 2012 Dalton Trans 41 13556

    Article  CAS  Google Scholar 

  14. Zhang P, Guo Y-N and Tang J 2013 Coord. Chem. Rev. 257 1728

    Article  CAS  Google Scholar 

  15. Habib F and Murugesu M 2013 Chem. Soc. Rev. 42 3278

    Article  CAS  Google Scholar 

  16. Aime S, Botta M and Terreno E 2005 Adv. Inorg. Chem. 57 173

    Article  CAS  Google Scholar 

  17. Woods M, Woessner D E and Sherry A D 2006 Chem. Soc. Rev. 35 500

    Article  CAS  Google Scholar 

  18. Aime S, Crich S G, Gianolio E, Giovenzana G B, Tei L and Terreno E 2006 Coord. Chem. Rev. 250 1562

    Article  CAS  Google Scholar 

  19. Werner E J, Datta A, Jocher C J and Raymond K N 2008 Angew. Chem. Intl. Ed. 47 8568

    Article  CAS  Google Scholar 

  20. Shibasaki M and Yoshikawa N 2002 Chem. Rev. 102 2187

    Article  CAS  Google Scholar 

  21. Li H-X, Zhu Y-J, Cheng M-L, Ren Z-G, Lang J-P and Shen Q 2006 Coord. Chem. Rev. 250 2059

    Article  CAS  Google Scholar 

  22. Visseaux M and Bonnet F 2011 Coord. Chem. Rev. 255 374

    Article  CAS  Google Scholar 

  23. Ghosh T, Mukhopadhyay A, Dargaiah K S C and Pal S 2010 Struct. Chem. 21 147

    Article  CAS  Google Scholar 

  24. Ghosh T and Pal S 2010 Inorg. Chim. Acta 363 3632

    Article  CAS  Google Scholar 

  25. Bain G A and Berry J F 2008 J. Chem. Educ. 85 532

    Article  CAS  Google Scholar 

  26. SMART Version 5.630 and SAINT-plus Version 6.45 2003 Bruker-Nonius Analytical X-ray Systems Inc., Madison, Wisconsin, USA

  27. Sheldrick G M 1997 SADABS, Program for Area Detector Absorption Correction, University of Göttingen, Göttingen

  28. Sheldrick G M 2008 Acta Crystallogr., Sect. A 64 112

    Article  CAS  Google Scholar 

  29. Farrugia L J 1999 J. Appl. Crystallogr. 32 837

    Article  CAS  Google Scholar 

  30. Macrae C F, Bruno I J, Chisholm J A, Edgington P R, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J and Wood P. A 2008 J. Appl. Crystallogr. 41 466

    Article  CAS  Google Scholar 

  31. Spek A L 2002 Platon, A Multipurpose Crystallographic Tool Utrecht University, Utrecht, The Netherlands

  32. Chen C, Chen H, Yan P and Hou G 2013 Li G Inorg. Chim. Acta 405 182

    Article  CAS  Google Scholar 

  33. Sommerer S O, Westcott B L, Cundari T R and Krause J A 1993 Inorg. Chim. Acta 209 101

    Article  CAS  Google Scholar 

  34. Benson M T, Cundari T R, Saunders L C and Sommerer S O 1997 Inorg. Chim. Acta 258 127

    Article  CAS  Google Scholar 

  35. Kemp W 1987 In Organic Spectroscopy (Macmillan: Hampshire) pp. 62–66

  36. Yatsimirskii K B and Davidenko N K 1979 Coord. Chem. Rev. 27 223

    Article  CAS  Google Scholar 

  37. Prasad T K and Rajasekharan M V 2009 Inorg. Chem. 48 11543

    Article  CAS  Google Scholar 

  38. Chakraborty J, Ray A, Pilet G, Chastanet G, Luneau D, Ziessel R F, Charbonnière L J, Carrella L, Rentschler E, El Fallahe M S and Mitra S 2009 Dalton Trans. 10263

  39. Szyczewski A, Lis S, Kruczyński Z, Pietrzak J, But S and Elbanowski M 1996 Acta Phys. Pol. A 90 345

    CAS  Google Scholar 

  40. Akilan P, Thirumavalavan M and Kandaswamy M 2003 Indian J. Chem. Technol. 10 363

    CAS  Google Scholar 

Download references

Acknowledgements

T. Ghosh thanks the University Grants Commission (UGC), New Delhi for a research fellowship. We thank the Department of Science and Technology (DST), New Delhi and the UGC, New Delhi for the facilities provided under the FIST and the CAS programmes, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SAMUDRANIL PAL.

Additional information

Supplementary Information

CCDC-1012274 and CCDC-1012275 contain the supplementary crystallographic data for 1⋅CH2Cl2 and 2⋅H2O, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHOSH, T., PAL, S. Synthesis and characterization of dodecahedral cerium(IV) and gadolinium(III) complexes with a tetradentate Schiff Base. J Chem Sci 127, 1201–1209 (2015). https://doi.org/10.1007/s12039-015-0887-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-015-0887-x

Keywords

Navigation