Skip to main content

Advertisement

Log in

Novel nanostructured CeO 2 as efficient catalyst for energy and environmental applications

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

We report here versatile methods to engineer the microstructure and understand the fundamental physicochemical properties of CeO2 to improve its catalytic viability for practical applications. In this context, different morphologies of CeO2 are synthesized using tailored homogeneous precipitation methods and characterized by XRD, BET, SEM and TPR methods. The shuttle-shaped CeO2 prepared under hydrothermal condition shows higher surface area and low-temperature reducibility. The 0.5 wt% Pt-impregnated shuttle-shaped CeO2 shows lower-temperature CO oxidation behaviour as compared to its bulk-like CeO2 (with 0.5 wt% Pt) counterpart, synthesized by conventional-reflux method. Further, nanorod morphology of CeO2 prepared with Cl as counter ion shows lower-temperature oxidation of soot as compared to the mesoflower morphology of CeO2, prepared with NO\(_{3}^{-}\) as counter ion in the reaction medium. Further, linear sweep voltammetry, chronopotentiometry and CO-stripping voltammetry studies are performed to evaluate the promoting activity of CeO 2 to Pt/C for ethanol electro-oxidation reaction in acidic media. Results show that CeO2 provides active triple-phase-interfacial sites for suitable adsorption of OH species which effectively oxidize the COads on Pt/C. The results presented here are significant in the context of understanding the physicochemical fine prints of CeO2 and CeO2 based hetero-nanocomposites for their suitability to important catalytic and energy-related applications.

CeO2 with engineered microstructure promotes CO oxidation, soot oxidation and alcohol electro-oxidation for energy and environmental applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Setten B A A L, Makkee M and Moulijn J A 2001 Catal. Rev. Sci. Eng. 43 489

  2. Freund H, Meijer G, Scheffler M, Schlögl R and Wolf M 2011 Angew. Chem. Int. Ed. 50 10064

    Google Scholar 

  3. Royer S and Duprez D 2011 ChemCatChem 3 24

  4. Herzing A A, Kiely C J, Carley A F, Landon P and Hutchings G J 2008 Science 321 1331

    Google Scholar 

  5. Cargnello M, Wieder N L, Montini T, Gorte R J and Fornasiero P 2010 J. Am. Chem. Soc. 132 1402

  6. Bokhimi X, Zanella R and Angeles-Chavez C 2010 J. Phys. Chem. C114 14101

  7. Bera P, Gayen A, Hegde M S, Lalla N P, Spadaro L, Frusteri F and Arena F 2003 J. Phys. Chem. B107 6122

    Google Scholar 

  8. Zhou H -P, Wu H -S, Shen J, Yin A -X, Sun L D and Yan C H 2010 J. Am. Chem. Soc. 132 4998

  9. Meher S K, Cargnello M, Troiani H, Montini T, Ranga Rao G and Fornasiero P 2013 Appl. Catal. B130–131 121

  10. Ranga Rao G, Fornasiero P, Di Monte R, Kašpar J, Vlaic G, Balducci G, Meriani S, Gubitosa G, Cremona A and Graziani M 1996 J. Catal. 162 1

    Google Scholar 

  11. Esch F, Fabris S, Zhou L, Montini T, Africh C, Fornasiero P, Comelli G and Rosei R 2005 Science 309 752

    Google Scholar 

  12. Meher S K and Ranga Rao G 2012 J. Colloid Interface Sci. 373 46

  13. Si R and Flytzani-Stephanopoulos M 2008 Angew. Chem. Int. Ed. 47 2884

  14. Parida K M and Sahu N 2008 J. Mol. Catal. A 287 151

    Google Scholar 

  15. Parida K M, Mohapatra P, Moma J, Jordaan W A and Scurrell M S 2008 J. Mol. Catal. A288 125

    Google Scholar 

  16. Parida K M, Sahu N, Tripathi A K and Kamble V S 2010 Environ. Sci. Technol. 44 4155

    Google Scholar 

  17. Zhou K, Wang X, Sun X, Peng Q and Li Y 2005 J. Catal. 229 206

  18. Setiabudi A, Chen J, Mul G, Makkee M and Moulijn J A 2004 Appl. Catal. B51 9

  19. Krishna K, Bueno-López A, Makkee M and Moulijn J A 2007 Appl. Catal. B75 189

    Google Scholar 

  20. Guzman J, Carrettin S and Corma A 2005 J. Am. Chem. Soc. 127 3286

    Google Scholar 

  21. Carrette L, Friedrich K A and Stimming U 2001 Fuel Cells 1 5

  22. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C and Léger J -M 2002 J. Power Sources 105 283

  23. Song S, Maragou V and Tsiakaras P 2007 J. Fuel Cell Sci. Technol. 4 203

    Google Scholar 

  24. Cameron D S, Hards G A, Harrison B and Potter R J 1987 Platinum Met. Rev. 31 173

    Google Scholar 

  25. Lamy C, Belgsir E M and Léger J 2001 J. Appl. Electrochem. 31 799

  26. Cuesta A 2011 ChemPhysChem 12 2375

    Google Scholar 

  27. Yuan H, Guo D, Qiu X, Zhu W and Chen L J 2009 J. Power Sources 188 8

  28. Ranga Rao G, Justin P and Meher S K 2011 Catal. Surv. Asia 15 221

    Google Scholar 

  29. Antolini E and Gonzalez E R 2010 Appl. Catal. B96 245

    Google Scholar 

  30. Meher S K and Ranga Rao G 2012 ACS Catal. 22795

  31. Suffredini H B, Tricoli V, Vatistas N and Avaca L A 2006 J. Power Sources 158 124

  32. Justin P and Ranga Rao G 2009 Catal. Today 141 138

  33. Justin P, Charan P H K and Ranga Rao G 2010 Appl. Catal. B100 510

  34. Justin P and Ranga Rao G 2011 Int. J. Hydrogen Energy 36 5875

  35. Meher S K and Ranga Rao G 2013 J. Phys. Chem. C117 4888

  36. Xu C and Shen P K 2004 Chem. Commun. 2238

  37. Chu Y -Y, Wang Z -B, Jiang Z -Z, Gu D -M and Yin G -P 2011 Adv. Mater. 23 3100

  38. Bambagioni V, Bianchini C, Chen Y, Filippi J, Fornasiero P, Innocenti M, Lavacchi A, Marchionni A, Oberhauser W and Vizza F 2012 ChemSusChem 5 1266

  39. Meher S K, Justin P and Ranga Rao G 2011 Nanoscale 3 683

  40. Ranga Rao G 1999 Bull. Mater. Sci. 22 89

    Google Scholar 

  41. Allian A D, Takanabe K, Fujdala K L, Hao X, Truex T J, Cai J, Buda C, Neurock M and Iglesia E 2011 J. Am. Chem. Soc. 133 4498

    Google Scholar 

  42. Wang Z, Wang Q, Liao Y, Shen G, Gong X, Han N, Liu H and Chen Y 2011 Chem. Phys. Chem. 12 2763

  43. Issa M, Petit C, Mahzoul H, Aboukaïs A and Brilhac J -F 2009 Top. Catal. 52 2063

  44. Liu J, Zhao Z, Liang P, Xu C, Duan A, Jiang G, Lin W and Wachs I E 2008 Catal. Lett. 120 148

  45. Machida M, Murata Y, Kishikawa K, Zhang D and Ikeue K 2008 Chem. Mater. 20 4489

    Google Scholar 

  46. Anumol E A, Kundu P, Deshpande P A, Madras G and Ravishankar N 2011 ACS Nano 5 8049

  47. Hu C -C and Liu K -Y 1999 Electrochim. Acta 44 2727

  48. Léger J -M, Rousseau S, Coutanceau C, Hahn F and Lamy C 2005 Electrochim. Acta 50 5118

    Google Scholar 

Download references

Acknowledgements

We thank Ministry of New and Renewable Energy, New Delhi, for providing the CHI 7081C electrochemical workstation to carry out the electrochemical measurements and the SERC Division of DST, Ministry of Science and Technology, New Delhi, for providing powder XRD and BET facilities (under FIST Schemes). We also thank Prof. Paolo Fornasiero, Department of Chemistry, University of Trieste, Italy for CO oxidation measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G RANGA RAO.

Rights and permissions

Reprints and permissions

About this article

Cite this article

MEHER, S.K., RAO, G.R. Novel nanostructured CeO 2 as efficient catalyst for energy and environmental applications. J Chem Sci 126, 361–372 (2014). https://doi.org/10.1007/s12039-014-0570-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-014-0570-7

Keywords

Navigation