Skip to main content
Log in

Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Molecular dynamics (MD) simulations and biased MD simulation were carried out for the neutral form of Paracetamol inserted in fully hydrated dipalmitoylphosphatidylcholine (DPPC) and dimyristoylphosphatidylcholine (DMPC) lipid bilayers. For comparison, fully hydrated DMPC and DPPC lipid bilayers were also simulated separately without Paracetamol. The simulation time for each system was 50 ns. At two concentrations of Paracetamol, various properties of the lipid bilayer such as area per lipid, order parameter, diffusion coefficient, radial distribution function, electrostatic potential, mass density and hydrogen bonds have been calculated. Also, the convergence in time of the free energy profile of the Paracetamol along a DPPC bilayer normal was calculated by umbrella sampling method. From the obtained results, it can be concluded that neutral form of Paracetamol shows a generally similar behaviour in DPPC and DMPC lipid bilayers. It was shown that the addition of Paracetamol causes a decrease in tail order parameter of both DPPC and DMPC lipid bilayers and the tail of Paracetamol adopts an inward orientation in the lipid bilayers. Also from the free energy profile, the high penetration barrier in the bilayer centre was determined.

The behaviour of Paracetamol in different dosages in two types of lipid bilayer membranes, DPPC and DMPC has been investigated by MD simulation. For the neutral form of the drug, the best position in the membrane has been identified by free energy calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berka K, Hendrychová T, Anzenbacher P and Otyepka M 2011 J. Phys. Chem. 115 11248

    Article  CAS  Google Scholar 

  2. Paloncýová M, Berka K and Otyepka M 2012 J. Chem. Theory Comput. 8 1200

    Article  Google Scholar 

  3. Boggara M B and Krishnamoorti R 2010 Biophys. J. 98 586

    Article  CAS  Google Scholar 

  4. Wu N A N, Palczewski K and Mu D J 2008 Pharmacol. Rev. 60 43

    Article  Google Scholar 

  5. Sneader W 2005 Drug discovery: A history (ed) N J Hoboken (New York: Wiley) p. 439

  6. Cormie P J, Nairn M and Welsh J 2008 B M J 337 2154

  7. Ahmad S R 2007 Lancet 369 462

    Article  Google Scholar 

  8. Bannwarth B, Netter P, Lapicque F, Gillet P, Pere P, Boccard E, Royer R J and Gaucher A 1992 Br. J. Clin. Pharmacol. 34 79

    Article  CAS  Google Scholar 

  9. Bales J R, Nicholson J K and Sadler P J 1985 Clin. Chem. 31 757

    CAS  Google Scholar 

  10. Prescott L F 1980 Br. J. Clin. Pharmacol. 10 291

    Article  Google Scholar 

  11. von Bruchlausen F 1982 J. Baumann Life. Sci. 30 1783

    Article  CAS  Google Scholar 

  12. Ward B and Alexander-Williams J M 1999 Acute Pain 2 139

    Article  CAS  Google Scholar 

  13. Steventon G B,Mitchell S C andWaring R H 1996 Drug Metabol. Drug Interact. 13 111

    Article  CAS  Google Scholar 

  14. Mojumdar E H and Lyubartsev A P 2010 Biophys. Chem. 153 27

    Article  CAS  Google Scholar 

  15. GhadamgahiMand Ajloo D 2013 J. Chem. Sci. 125 627

    Article  CAS  Google Scholar 

  16. Yousefpour A, Amjad S I, Nademi Y and Modarress H 2013 Int. J. Quantum Chem. 113 1919

    Article  CAS  Google Scholar 

  17. Marrink S J, de Vries A H and Tieleman D P 2009 Biochim. Biophys. Acta 1788 149

    Article  CAS  Google Scholar 

  18. Jana B, Pal S and Bagchi B 2012 J. Chem. Sci 124 317

    Article  CAS  Google Scholar 

  19. Tieleman D P and Berendsen H J C 1996 Chem. Phys. J. 105 4871

    Article  CAS  Google Scholar 

  20. Berger O, Edholm O and Jahnig F 1997 Biophys. J. 72 2002

    Article  CAS  Google Scholar 

  21. Lindahl E and Edholm O 2000 Biophys. J. 79 426

    Article  CAS  Google Scholar 

  22. Benz R W, Castro-Roman F, Tobias D J and White S H 2005 Biophys. J. 88 805

    Article  CAS  Google Scholar 

  23. Hogberg C J and Lyubartsev A P 2006 J. Phys. Chem. B 110 14326

    Article  Google Scholar 

  24. Berendsen H J C, Postma J P M, van GunsterenWF and Hermans J 1981 Intermolecular forces (eds) B Pullman, (Reidel, Dordrecht ) p. 331

  25. Schuttelkopf A W and van Aalten D M 2004 Acta Crystallogr. Sec. D: Biol. Crystallogr. 60 1355

    Article  Google Scholar 

  26. Hess B, Kutzner C, Van Der Spoel D and Lindahl E 2008 J. Chem. Theory Comput. 4 435

    Article  CAS  Google Scholar 

  27. Bussi G, Donadio D and Parrinello M 2007 J. Chem. Phys. 126 014101

    Article  Google Scholar 

  28. Hess B, Bekker H, Berendsen H J C and Fraaije J G EM 1997 Comput. Chem. J. 18 1463

    Article  CAS  Google Scholar 

  29. Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196

    Article  CAS  Google Scholar 

  30. Darden T, York D and Pedersen L 1993 Chem. Phys. J. 98 10089

    Article  CAS  Google Scholar 

  31. Snyman J A 2005 Practical mathematical optimization: An introduction to basic optimization theory and classical and new gradient-based algorithms (New York: Springer) p. 40

  32. Oldfield E, Chapman D and Derbyshire W 1971 FEBS Lett. 16 102

    Article  CAS  Google Scholar 

  33. Petrache H I, Dodd S W and Brown M F 2000 Biophys J. 79 3172

    Article  CAS  Google Scholar 

  34. Seelig A and Seelig J 1974 Biochemistry 13 4839

    Article  CAS  Google Scholar 

  35. Porasso R D, Bennett W F, Oliveira-Costa S D and Lopez Cascales J J 2009 J. Phys. Chem. B 113 9988

    Article  CAS  Google Scholar 

  36. van der Spoel D, van Maaren P J, Larsson P and Timneanu N 2006 J. Phys. Chem. B 110 4393

    Article  CAS  Google Scholar 

  37. Modig K, Pfrommer B G and Halle B 2003 Phys. Rev. Lett. 90 075502

    Article  Google Scholar 

  38. Nagle J F 1993 Biophys. J. 64 1476

    Article  CAS  Google Scholar 

  39. Feller S E, Venable RMand Pastor RW 1997 Langmuir 13 6555

    Article  CAS  Google Scholar 

  40. Song Y, Guallar V and Baker N A 2005 Biochemistry 44 13425

    Article  CAS  Google Scholar 

  41. Venable R M, Zhang Y, Hardy B J and Pastor RW 1993 Science 262 223

    Article  CAS  Google Scholar 

  42. Patra M, Karttunen M, Hyvönen M T, Falck E and Vattulainen I 2004 J. Phys. Chem. B 108 4485

    Article  CAS  Google Scholar 

  43. Hogberg C J and Lyubartsev A P 2006 J. Phys. Chem. B 110 14326

    Article  Google Scholar 

  44. Wohlert J J and Edholm O 2006 J. Chem. Phys. 125 204703

    Article  Google Scholar 

  45. Haines T H 1994 FEBS Lett. 346 115

    Article  CAS  Google Scholar 

  46. Hogberg C J and Lyubartsev A P 2008 Biophys. J. 94 525

    Article  Google Scholar 

  47. Patra M, Salonen E, Terama E, Vattulainen I, Faller R, Lee BW, Holopainen J and Karttunen M 2006 Biophys. J. 90 1121

    Article  CAS  Google Scholar 

  48. Wohlert J and Edholm O 2004 Biophys. J. 87 2433

    Article  CAS  Google Scholar 

  49. Cevc G 1990 Biochim. Biophys. Acta 1031 311

    Article  CAS  Google Scholar 

  50. Clarke R J 2001 Adv. Colloid Interface Sci. 89–90 263

    Article  Google Scholar 

  51. Neale C, Bennett W F D, Tieleman D P and Pomès R 2011 J. Chem. Theory Comput. 7 4175

    Article  CAS  Google Scholar 

  52. MacCallum J L and Tieleman D P 2006 J. Am. Chem. Soc. 128 125

    Article  CAS  Google Scholar 

  53. Orsi M and Essex J W 2010 Soft Matter 6 3797

    Article  CAS  Google Scholar 

  54. Orsi M, Sanderson W E and Essex J W 2009 J. Phys. Chem. B 113 12019

    Article  CAS  Google Scholar 

  55. Xiang T-X and Anderson B D 2006 Adv. Drug Delivery Rev. 58 1357

    Article  CAS  Google Scholar 

  56. Kumar S, Rosenberg J, Bouzida D, Swensen R H and Kollman P A 1992 J. Comput. Chem. 13 1011

    Article  CAS  Google Scholar 

  57. Hub J S, Groot B L D and Spoel D V D 2010 J. Chem. Theory Comput. 6 3713

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the High Performance Computing Research Center (HPCRC) of Amirkabir University of Technology (Tehran Polytechnic) for provision of computer facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to HAMID MODARRESS.

Additional information

Supplementary information

The supplementary information figures S1S4 and table S1 can be seen in www.ias.ac.in/chemsci website.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12039_2013_556_Fig1_ESM.tif

Mass density of different components for DMPC lipid bilayer systems: 4 Neutral Paracetamol system (⎕), 8 Neutral Paracetamol system (+), DMPC reference system (☆), DMPC system containing 4 Paracetamol (⎕), DMPC system containing 8 Paracetamol (⎕ · ⎕), water (♢). (DOC 870 KB)

The angular distribution of the paracetamol long axis in DMPC lipid bilayer. (DOC 1.4 MB)

Average number of different hydrogen bonds for paracetamol in simulated systems. (DOC 62.5 KB)

Lateral mean square displacement of paracetamol in DMPC lipid bilayers. (DOC 284 KB)

DMPC membrane electrostatic potential. (DOC 2.46 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NADEMI, Y., AMJAD IRANAGH, S., YOUSEFPOUR, A. et al. Molecular dynamics simulations and free energy profile of Paracetamol in DPPC and DMPC lipid bilayers. J Chem Sci 126, 637–647 (2014). https://doi.org/10.1007/s12039-013-0556-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-013-0556-x

Keywords

Navigation