Skip to main content
Log in

Biocatalysis of azidolysis of epoxides: Computational evidences on the role of halohydrin dehalogenase (HheC)

  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Biocatalytic azidolysis of 9 unsymmetrical epoxides by halohydrin dehalogenase enzyme (HheC) in gas phase and uncatalysed azidolysis of the same epoxides in gas phase and in aqueous solution have been modelled at DFT level. Aliphatic epoxides (1–6) and aromatic epoxides (9) undergo β cleavage while styrene oxide (7) and p-nitro styrene (8) oxide prefer α cleavage in the gas phase. Inclusion of aqueous solvation effect via Polarizable Continuum Model (PCM) increases the activation barrier and makes the reaction endothermic due to extensive solvation of azide anion and oxido anionic products, but does not alter the regioselectivity. Halohydrin dehalogenase from Agrobacterium radiobactor AD1 catalyses (E1–E9) ring opening of all these epoxides by azide ion with β selectivity and the reversal of selectivity in epoxide 7 and 8 is notable. These reactions follow, in both enzymatic and non-enzymatic environment, S N 2 mechanism. Calculations while agreeing totally with experimental results offer better insights on the factors determining the regioselectivity and particularly the role of enzyme. Active site model and crystal structure data reveal that the Tyr145 and Ser132 form weak hydrogen bonds with epoxide oxygen lone pair and form reactant enzyme complex (REC). The enzyme complex activates the epoxide ring towards azidolysis. The NBO deletion and second order perturbation analyses clearly bring out the role of catalytic duo Tyr145 and Ser132 and particularly shed light on the dominant contribution of Tyr145 in selectively activating C β –O bond. The present results indicate that Arg149 or other residues in the pocket do not seem to have any significant effect on the reaction.

The bio-catalysed and uncatalysed ring opening of various epoxides by azide anion have been modelled at B3LYP/6-31+g(2d, p) level. Nine epoxides that include six aliphatic (1–6) and three aromatic (7–9) epoxides have been used for the study and experimental reports where available have been compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) Archer I V J 1997 Tetrahedron 53 15617 (b) Nakamura T, Nagasawa T, Yu F, Watanabe I and Yamada H 1994 Appl. Environ. Microbiol. 60 1297 (c) Castro C E and Bartnicki E W 1968 Biochemistry 7 3213 (d) Assis H M S, Sallis P J, Bull A T and Hardman D J 1998 Enzyme Microb. Technol. 22 568 (e) Van den Wijngaard A J, Reuvekamp P T W and Janssen D B 1991 J. Bacteriol. 173 124

  2. Orru R A V and Faber K 1999 Curr. Opin. Chem. Biol. 3 16

    Article  CAS  Google Scholar 

  3. Patai S (Ed.) 1971 The Chemistry of Azido group. (New York: Wiley)

    Google Scholar 

  4. Jeffrey L S H, Johan E T, Van Hylckama V, Lixia T, Janssan D B and Kellogg R M 2001 Org. Lett. 3 41

    Article  Google Scholar 

  5. Chini M, Crotti P and Macchia F 1990 Tetrahedron Lett. 31 5641

    Article  CAS  Google Scholar 

  6. Blumenstein J J, Ukachukwu V C, Mohan R S and Whalen D L 1993 J. Org. Chem. 58 924

    Article  CAS  Google Scholar 

  7. (a) Hopmann H K and Fahmi H 2008 Biochemistry 47 4973 (b) Kleiner C M and Schreniner P R 2006 Chem. Commun. 28 4315 (c) Thomsen R and Christensen M H 2006 J. Med. Chem. 49 3315 (d) Hopmann H K and Fahmi H 2008 J. Chem. Theory. Comput. 4 1129

  8. Janssen D B, Majerić-Elenkov M, Hasnaoui G, Hauer B and Lutje Spelberg J H 2006 Biochem. Soc. Trans. 34 291

    Article  CAS  Google Scholar 

  9. Lutje Spelberg J H, Tang L, Van Gelder M, Kellogg R M and Janssen D 2002 Tetrahedron Asymmetry. 13 1083

    Article  CAS  Google Scholar 

  10. Elenkov M M, Tang L, Hauer B and Janssen D B 2006 Org. Lett. 8 4227

    Article  Google Scholar 

  11. Elenkov M M, Bernhard H and Janssen D B 2006 Adv. Synth. Catal. 348 579

    Article  CAS  Google Scholar 

  12. Haak R M, Tarabiono C, Janssen D B, Minnaard A J, De Varies J G and Feringa B L 2007 Org. Biomol. Chem. 5 318

    Article  CAS  Google Scholar 

  13. Mladenovic M, Konstantin J, Reinhold J J, Thiel W, Schirmeister T and Engels B 2008 J. Phys. Chem. B. 112 5458

    Article  CAS  Google Scholar 

  14. Frisch M J et al. 2003 Gaussian, Inc, Wallingford CT, Gaussian 03, Revision C.02

  15. De Jong R M, Tiesinga J J, Rozeboom H J, Kalk H, Tang L, Janssen D B and Dijkstra P W 2003 EMBO J. 22 4933

    Article  Google Scholar 

  16. (a) Zhang X, DeChancie J, Gunaydin H, Chowdry A B, Clemente F R, Smith A J, Handel T M and Houk K N 2008 J. Org. Chem. 73 889, (b) Claeyssens F, Harvey J N, Mulholland A J, Ranaghan K E, Schütz M, Thiel S, Thiel W and Werner H J 2006 J. Angew. Chem Int. Ed. 45 6856

  17. Laitinen T, Rouvinen J and Peräkylä M J 1998 J. Org. Chem. 63 8157

    Article  CAS  Google Scholar 

  18. Tamami B, Iranpoor N and Mahdavi H 2002 Synth. Commun. 32 1251

    Article  CAS  Google Scholar 

  19. Elenkov M M, Tang L, Meetsma A, Hauer B and Janssen D B 2008 Org. Lett. 10 2417

    Article  CAS  Google Scholar 

  20. De Jone R. M, Jan J, Tiesinga W, Alessandra V, Tang L and Janssen D B 2005 J. Am. Chem. Soc. 127 13338

    Article  Google Scholar 

  21. Hasnaoui G, Jeffrey H, Spelberg L, Erik de Vries, Tang L, Hauer B and Janssen D B 2005 Tetrahedron Asymmetry. 16 1685

    Article  CAS  Google Scholar 

  22. Xu W, Xu J H, Pan J, Qing G and Xin-Yan W 2006 Org. Lett. 8 1737

    Article  CAS  Google Scholar 

  23. Ammantini D, Francesco F, Piermatti. O, Tortoioli S and Vaccaro L 2002 ARKIVOC. XI 293 and references Cited there in.

    Google Scholar 

  24. Oshima T, Haruyasu A, Kubo E, Miyamoto S and Togaya K 2008 Org. Lett. 10 2413

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to PONNAMBALAM VENUVANALINGAM.

Rights and permissions

Reprints and permissions

About this article

Cite this article

SENTHILNATHAN, D., TAMILMANI, V. & VENUVANALINGAM, P. Biocatalysis of azidolysis of epoxides: Computational evidences on the role of halohydrin dehalogenase (HheC). J Chem Sci 123, 279–290 (2011). https://doi.org/10.1007/s12039-011-0082-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-011-0082-7

Keywords

Navigation