Skip to main content
Log in

miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Auxin is one of the most important plant growth hormones, playing a crucial role in development as well as in stress responses. Auxin biosynthesis and signaling pathway comprises a series of events including auxin perception by the receptor, activation, and function of auxin response factors and control by auxin repressors. All these factors are regulated by several different microRNAs during leaf, flower and fruit development, anther development, nodulation, lateral and adventitious root development, potato tuber development as well as during heat stress, submergence, boron toxicity, aluminium stress responses, etc., as depicted in the available literature. In this review a thorough study on miRNA-mediated regulation of auxin biosynthesis and signaling has been done in various plant species. The data gathered can be utilized to point out the particular miRNA-mediated regulation module which can be utilized to modulate the expression of the miRNA and thereby modulation of the auxin pathway. Information in this review would be beneficial to utilize the miRNA expression to generate the protocol for engineering plants with altered auxin signaling pathway to obtain better yield and improved stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Achkar NP, Cambiagno DA and Manavella PA 2016 miRNA biogenesis: a dynamic pathway. Trends Plant Sci. 21 1034–1044

    CAS  PubMed  Google Scholar 

  • Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z and Eshed Y 2006 Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18 1134–1151

    CAS  PubMed  PubMed Central  Google Scholar 

  • An W, Gong W, He S, Pan Z, Sun J and Du X 2015 MicroRNA and mRNA expression profiling analysis revealed the regulation of plant height in Gossypium hirsutum. BMC Genomics 16 886

    PubMed  PubMed Central  Google Scholar 

  • Aravind J, Rinku S, Pooja B, Shikha M, Kaliyugam S,, et al. 2017 Identification, characterization, and functional validation of drought-responsive microRNAs in subtropical maize inbreds. Front. Plant Sci. 8 941

    PubMed  PubMed Central  Google Scholar 

  • Armenta-Medina A, Lepe-Soltero D, Xiang D, Datla R, Abreu-Goodger C and Gillmor CS 2017 Arabidopsis thaliana miRNAs promote embryo pattern formation beginning in the zygote. Dev. Biol. 431 145–151

    CAS  PubMed  Google Scholar 

  • Audran-Delalande C, Bassa C, Mila I, Regad F, Zouine M and Bouzayen M 2012 Genome-wide identification, functional analysis and expression profiling of the Aux/IAA gene family in tomato. Plant Cell Physiol. 53 659–672

    CAS  PubMed  Google Scholar 

  • Aukerman MJ and Sakai H 2003 Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15 2730–2741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Park HC, Kim MC and Yun DJ 2013 The role of Arabidopsis MYB2 in miR399f-mediated phosphate-starvation response. Plant Signal Behav. 8 e23488

    PubMed  PubMed Central  Google Scholar 

  • Bai B, Bian H, Zeng Z, Hou N, Shi B, Wang J, Zhu M and Han N 2017 miR393-mediated auxin signaling regulation is involved in root elongation inhibition in response to toxic aluminum stress in barley. Plant Cell Physiol. 58 426–439

    CAS  PubMed  Google Scholar 

  • Bajguz A and Piotrowska A 2009 Conjugates of auxin and cytokinin. Phytochemistry 70 957–969

    CAS  PubMed  Google Scholar 

  • Baldrich P, Kakar K, Siré C, Moreno AB, Berger A, et al. 2014 Small RNA profiling reveals regulation of Arabidopsis miR168 and heterochromatic siRNA415 in response to fungal elicitors. BMC Genomics 15 1083

    PubMed  PubMed Central  Google Scholar 

  • Ben‐Gera H, Dafna A, Alvarez JP, Bar M, Mauerer M and Ori N 2016 Auxin-mediated lamina growth in tomato leaves is restricted by two parallel mechanisms. Plant J. 86 443–457

    CAS  PubMed  Google Scholar 

  • Bensmihen S 2015 Hormonal control of lateral root and nodule development in legumes. Plants (Basel) 4 523–47

    CAS  PubMed Central  Google Scholar 

  • Chae K, Isaacs CG, Reeves PH, Maloney GS, Muday GK, Nagpal P and Reed JW 2012 Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J. 71 684–697

    CAS  PubMed  Google Scholar 

  • Chen Q, Westfall CS, Hicks LM, Wang S and Jez JM 2010 Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J. Biol. Chem. 285 29780–29786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X 2005 MicroRNA biogenesis and function in plants. FEBS Lett. 579 5923–5931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Hu L, Han N, Hu J, Yang Y, Xiang T, Zhang X and Wang L 2015 Overexpression of a miR393-resistant form of transport inhibitor response protein 1 (mTIR1) enhances salt tolerance by increased osmoregulation and Na + exclusion in Arabidopsis thaliana. Plant Cell Physiol. 56 73–83

    CAS  PubMed  Google Scholar 

  • Damodharan S, Corem S, Gupta SK and Arazi T 2018 Tuning of SlARF10A dosage by sly-miR160a is critical for auxin-mediated compound leaf and flower development. Plant J. 96 855–868

    CAS  PubMed  Google Scholar 

  • Damodharan S, Zhao D and Arazi T 2016 A common miRNA160-based mechanism regulates ovary patterning, floral organ abscission and lamina outgrowth in tomato. Plant J. 86 458–471

    CAS  PubMed  Google Scholar 

  • De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, et al. 2010 A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr. Biol. 20 1697–1706

    CAS  PubMed  Google Scholar 

  • Dinesh DC, Villalobos LI and Abel S 2016 Structural biology of nuclear auxin action: trends Plant Sci. 21 302–316

    CAS  PubMed  Google Scholar 

  • Ding Y, Ma Y, Liu N, Xu J, Hu Q, et al. 2017 microRNAs involved in auxin signalling modulate male sterility under high-temperature stress in cotton (Gossypium hirsutum). Plant J. 91 977–994

    CAS  PubMed  Google Scholar 

  • Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL and Carrington JC 2006 Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol. 16 939–944

    CAS  PubMed  Google Scholar 

  • Fang Y, Xie K and Xiong L 2014 Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice. J. Exp. Bot. 65 2119–2135

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Duan X, Zhang Q, Li X, Wang B, Huang L, Wang X and Kang Z 2014 The target gene of tae-miR164, a novel NAC transcription factor from the NAM subfamily, negatively regulates resistance of wheat to stripe rust. Mol. Plant Pathol. 15 284–296

    CAS  PubMed  PubMed Central  Google Scholar 

  • Glazińska P, Wojciechowski W, Wilmowicz E, Zienkiewicz A, Frankowski K and Kopcewicz J 2014 The involvement of InMIR167 in the regulation of expression of its target gene InARF8, and their participation in the vegetative and generative development of Ipomoea nil plants. J. Plant Physiol. 171 225–234

    PubMed  Google Scholar 

  • Guilfoyle TJ and Hagen G 2007 Auxin response factors. Curr. Opin. Plant Biol. 10 453–460

    CAS  PubMed  Google Scholar 

  • Guo F, Han N, Xie Y, Fang K, Yang Y, Zhu M, Wang J and Bian H 2016 The miR393a/target module regulates seed germination and seedling establishment under submergence in rice (Oryza sativa L.). Plant Cell Environ. 39 2288–2302

    CAS  PubMed  Google Scholar 

  • Guo HS, Xie Q, Fei JF and Chua NH 2005 MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17 1376–1386

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Bussell JD, Păcurar DI, Schwambach J, Păcurar M and Bellini C 2009 Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance. Plant Cell 21 3119–3132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, et al. 2012 Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24 2515–2527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hendelman A, Buxdorf K, Stav R, Kravchik M and Arazi T 2012 Inhibition of lamina outgrowth following Solanum lycopersicum AUXIN RESPONSE FACTOR 10 (SlARF10) derepression. Plant Mol. Biol. 78 561–576

    CAS  PubMed  Google Scholar 

  • Hobecker KV, Reynoso MA, Bustos-Sanmamed P, Wen J, Mysore KS, Crespi M, Blanco FA and Zanetti ME 2017 The MicroRNA390/TAS3 pathway mediates symbiotic nodulation and lateral root growth. Plant Physiol. 174 2469–2486

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Li Z and Zhao D 2016a Deregulation of the OsmiR160 target gene OsARF18 causes growth and developmental defects with an alteration of auxin signaling in rice. Sci. Rep. 6 29938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JH, Qi YP, Wen SX, Guo P, Chen XM and Chen LS 2016b Illumina microRNA profiles reveal the involvement of miR397a in Citrus adaptation to long-term boron toxicity via modulating secondary cell-wall biosynthesis. Sci. Rep. 6 22900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iglesias MJ, Terrile MC, Windels D, Lombardo MC, Bartoli CG, Vazquez F, Estelle M and Casalongué CA 2014 MiR393 regulation of auxin signaling and redox-related components during acclimation to salinity in Arabidopsis. PLoS One 9 e107678

    PubMed  PubMed Central  Google Scholar 

  • Jodder J, Das R, Sarkar D, Bhattacharjee P and Kundu P 2018 Distinct transcriptional and processing regulations control miR167a level in tomato during stress. RNA Biol. 15 130

    PubMed  Google Scholar 

  • Jodder J, Basak S, Das R and Kundu P 2017 Coherent regulation of miR167a biogenesis and expression of auxin signaling pathway genes during bacterial stress in tomato. Physiol. Mol. Plant Path. 100 97–105

    CAS  Google Scholar 

  • Jones-Rhoades MW and Bartel DP 2004 Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell. 14 787–799

    CAS  PubMed  Google Scholar 

  • Jing H, Yang X, Zhang J, Liu X, Zheng H, et al. 2015 Peptidyl-prolyl isomerization targets rice Aux/IAAs for proteasomal degradation during auxin signalling. Nat. Commun. 6 7395

    CAS  PubMed  Google Scholar 

  • Kinoshita N, Wang H, Kasahara H, Liu J, MacPherson C, et al. 2012 IAA-Ala Resistant3, an evolutionarily conserved target of miR167, mediates Arabidopsis root architecture changes during high osmotic stress. Plant Cell 24 3590–3602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C and Zhang B 2016 MicroRNAs in control of plant development. J. Cell Physiol. 231 303–313

    CAS  PubMed  Google Scholar 

  • Lin JS, Kuo CC, Yang IC, Tsai WA, Shen YH, et al. 2018 MicroRNA160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in. Front. Plant Sci. 9 68

    PubMed  PubMed Central  Google Scholar 

  • Liu N, Wu S, Van Houten J, Wang Y, Ding B, et al. 2014 Down-regulation of AUXIN RESPONSE FACTORS 6 and 8 by microRNA 167 leads to floral development defects and female sterility in tomato. J. Exp. Bot. 65 2507–2520

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Dong X, Liu Z, Shi Z, Jiang Y, Qi M, Xu T and Li T 2016 Repression of ARF10 by microRNA160 plays an important role in the mediation of leaf water loss. Plant Mol. Biol. 92 313–336

    CAS  Google Scholar 

  • Liu Z, Miao L, Huo R, Song X, Johnson C, Kong L, Sundaresan V and Yu X 2018 ARF2-ARF4 and ARF5 are essential for female and male gametophyte development in Arabidopsis. Plant Cell Physiol. 59 179–189

    CAS  PubMed  Google Scholar 

  • Mallory AC, Bartel DP and Bartel B 2005 MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17 1360–1375

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marin E, Jouannet V, Herz A, Lokerse AS, Weijers D, et al. 2010 miR390, Arabidopsis TAS3 tasiRNAs, and their AUXIN RESPONSE FACTOR targets define an autoregulatory network quantitatively regulating lateral root growth. Plant Cell 22 1104–1117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, et al. 2005 Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132 4107–18

    CAS  PubMed  Google Scholar 

  • Natarajan B, Kalsi HS, Godbole P, Malankar N, Thiagarayaselvam A, et al. 2018 MiRNA160 is associated with local defense and systemic acquired resistance against Phytophthora infestans infection in potato. J. Exp. Bot. 69 2023–2036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Navarro L 2016 A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 352 1286–1286

    Google Scholar 

  • Nizampatnam NR, Schreier SJ, Damodaran S, Adhikari S and Subramanian S 2015 microRNA160 dictates stage-specific auxin and cytokinin sensitivities and directs soybean nodule development. Plant J. 84 140–153

    CAS  PubMed  Google Scholar 

  • Okushima Y, Overvoorde PJ, Arima K, Alonso JM, Chan A, et al. 2005 Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell 17 444–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parry G, Calderon-Villalobos LI, Prigge M, Peret B, Dharmasiri S, et al. 2009 Complex regulation of the TIR1/AFB family of auxin receptors. Proc. Natl. Acad. Sci. USA 106 22540–22545

    CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B and Bartel DP 2002 Prediction of plant microRNA targets. Cell 110 513–520

    CAS  PubMed  Google Scholar 

  • Salehin M, Bagchi R and Estelle M 2015 SCFTIR1/AFB-based auxin perception: mechanism and role in plant growth and development. Plant Cell 27 9–19

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanan-Mishra N, Varanasi SP and Mukherjee SK 2013 Micro-regulators of auxin action. Plant Cell Rep. 32 733–740

    CAS  PubMed  Google Scholar 

  • Santin F, Bhogale S, Fantino E, Grandellis C, Banerjee AK and Ulloa RM 2017 Solanum tuberosum StCDPK1 is regulated by miR390 at the posttranscriptional level and phosphorylates the auxin efflux carrier StPIN4 in vitro, a potential downstream target in potato development. Physiol. Plant. 159 244–261

    CAS  PubMed  Google Scholar 

  • Sattar S, Addo‐Quaye C and Thompson GA 2016 miRNA-mediated auxin signalling repression during Vat-mediated aphid resistance in Cucumis melo. Plant Cell Environ. 39 1216–1227

    CAS  PubMed  Google Scholar 

  • Shi M, Hu X, Wei Y, Hou X, Yuan X, Liu J and Liu Y 2017 Genome-wide profiling of small RNAs and degradome revealed conserved regulations of miRNAs on auxin-responsive genes during fruit enlargement in peaches. Int. J. Mol. Sci. 18 2599

    PubMed Central  Google Scholar 

  • Si-Ammour A, Windels D, Arn-Bouldoires E, Kutter C, Ailhas J, Meins F and Vazquez F 2011 miR393 and secondary siRNAs regulate expression of the TIR1/AFB2 auxin receptor clade and auxin-related development of Arabidopsis leaves. Plant Physiol. 157 683–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smit ME and Weijers D 2015 The role of auxin signaling in early embryo pattern formation. Curr. Opin. Plant Biol. 28 99–105

    CAS  PubMed  Google Scholar 

  • Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, et al. 2005 Auxin and light control of adventitious rooting in Arabidopsis require ARGONAUTE1. Plant Cell 17 1343–1359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian CE, Muto H, Higuchi K, Matamura T, Tatematsu K, Koshiba T and Yamamoto KT 2004 Disruption and overexpression of auxin response factor 8 gene of Arabidopsis affect hypocotyl elongation and root growth habit, indicating its possible involvement in auxin homeostasis in light condition. Plant J. 40 333–343

    CAS  PubMed  Google Scholar 

  • Turner M, Nizampatnam NR, Baron M, Coppin S, Damodaran S, et al. 2013 Ectopic expression of miR160 results in auxin hypersensitivity, cytokinin hyposensitivity, and inhibition of symbiotic nodule development in soybean. Plant Physiol. 162 2042–2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Xue JS, Yu YH, Liu SQ, Zhang JX, et al. 2017 Fine regulation of ARF17 for anther development and pollen formation. BMC Plant Biol. 17 243

    PubMed  PubMed Central  Google Scholar 

  • Wang JJ and Guo HS 2015 Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by microRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis. Plant Cell 27 574–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW and Chen XY 2005 Control of root cap formation by MicroRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17 2204–2216

    CAS  PubMed  PubMed Central  Google Scholar 

  • Windels D, Bielewicz D, Ebneter M, Jarmolowski A, Szweykowska-Kulinska Z and Vazquez F 2014 miR393 is required for production of proper auxin signalling outputs. PLoS One 9 e95972

    PubMed  PubMed Central  Google Scholar 

  • Windels D and Vazquez F 2011 miR393: integrator of environmental cues in auxin signaling? Plant Signal Behav. 6 1672–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu MF, Tian Q and Reed JW 2006 Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133 4211–4218

    CAS  PubMed  Google Scholar 

  • Wójcik AM and Gaj MD 2016 miR393 contributes to the embryogenic transition induced in vitro in Arabidopsis via the modification of the tissue sensitivity to auxin treatment. Planta 244 231–243

    PubMed  PubMed Central  Google Scholar 

  • Wójcik AM, Nodine MD and Gaj MD 2017 miR160 and miR166/165 Contribute to the LEC2-mediated auxin response involved in the somatic embryogenesis induction in Arabidopsis. Front. Plant. Sci. 8 2024

    PubMed  PubMed Central  Google Scholar 

  • Xu J, Li J, Cui L, Zhang T, Wu Z, et al. 2017 New insights into the roles of cucumber TIR1 homologs and miR393 in regulating fruit/seed set development and leaf morphogenesis. BMC Plant Biol. 17 130

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Tian L, Sun MX, Huang XY, Zhu J, Guan YF, Jia QS and Yang ZN 2013 AUXIN RESPONSE FACTOR17 is essential for pollen wall pattern formation in Arabidopsis. Plant Physiol. 162 720–731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang JH, Han SJ, Yoon EK and Lee WS 2006 Evidence of an auxin signal pathway, microRNA167-ARF8-GH3, and its response to exogenous auxin in cultured rice cells. Nucleic Acids Res. 34 1892–1899

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanti Jodder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jodder, J. miRNA-mediated regulation of auxin signaling pathway during plant development and stress responses. J Biosci 45, 91 (2020). https://doi.org/10.1007/s12038-020-00062-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00062-1

Keywords

Navigation