Skip to main content
Log in

Single-molecule photobleaching: Instrumentation and applications

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Single-molecule photobleaching (smPB) technique is a powerful tool for characterizing molecular assemblies. It can provide a direct measure of the number of monomers constituting a given oligomeric particle and generate the oligomer size distribution in a specimen. A major current application of this technique is in understanding protein aggregation, which is linked to many incurable diseases. Quantitative measurement of the size distribution of an aggregating protein in a physiological solution remains a difficult task, since techniques such as dynamic light scattering or fluorescence correlation spectroscopy (FCS) can provide an average size, but cannot accurately resolve the underlying size distribution. Here we describe the smPB method as implemented on a home-built total internal reflection fluorescence microscope (TIRF). We first describe the construction of a TIRF microscope, and then demonstrate the power of smPB by characterizing a solution of Amylin (hIAPP) oligomers, a 37-residue peptide whose aggregation is associated with Type II diabetes. We compare our results with FCS data obtained from the same specimen, and discuss the advantages and disadvantages of the two techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Axelrod D 2001 Total internal reflection fluorescence microscopy in cell biology. Traffic 2 764–774

    Article  PubMed  CAS  Google Scholar 

  • Axelrod D, Burghardt TP and Thompson NL 1984 Total internal reflection fluorescence. Annu. Rev. Biophys. Bioeng. 13 247–268

    Article  PubMed  CAS  Google Scholar 

  • Chandra B, Mithu VS, Bhowmik D, Das AK, Sahoo B, Maiti S and Madhu PK 2017 Curcumin dictates divergent fates for the central salt bridges in amyloid-beta40 and amyloid-beta42. Biophys. J. 112 1597–1608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chung SH and Kennedy RA 1991 Forward-backward non-linear filtering technique for extracting small biological signals from noise. J. Neurosci. Methods 40 71–86

    Article  PubMed  CAS  Google Scholar 

  • Dietz MS, Hasse D, Ferraris DM, Gohler A, Niemann HH and Heilemann M 2013 Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells. BMC Biophys. 6 6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding H, Schauerte JA, Steel DG and Gafni A 2012 Beta-Amyloid (1–40) peptide interactions with supported phospholipid membranes: a single-molecule study. Biophys. J. 103 1500–1509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ding H, Wong PT, Lee EL, Gafni A and Steel DG 2009 Determination of the oligomer size of amyloidogenic protein beta-amyloid (1–40) by single-molecule spectroscopy. Biophys. J. 97 912–921

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fish KN 2009 Total internal reflection fluorescence (TIRF) microscopy. Curr. Protoc. Cytom. 12 18

    PubMed  Google Scholar 

  • Garai K, Sengupta P, Sahoo B and Maiti S 2006 Selective destabilization of soluble amyloid beta oligomers by divalent metal ions. Biochem. Biophys. Res. Commun. 345 210–215

    Article  PubMed  CAS  Google Scholar 

  • Garai K, Sahoo B, Kaushalya S, Desai R and Maiti S 2007 Zinc lowers amyloid-β toxicity by selectively precipitating aggregation intermediates. Biochemistry 46 10655–10663

    Article  PubMed  CAS  Google Scholar 

  • Gordon MP, Ha T, Selvin PR 2004 Single-molecule high-resolution imaging with photobleaching. Proc. Natl. Acad. Sci. USA 101 6462–6465

    Article  PubMed  CAS  Google Scholar 

  • Hastie P, Ulbrich MH, Wang HL, Arant RJ, Lau AG, Zhang Z, Isacoff EY and Chen L 2013 AMPA receptor/TARP stoichiometry visualized by single-molecule subunit counting. Proc. Natl. Acad. Sci. USA 110 5163–5168

    Article  PubMed  Google Scholar 

  • Johnson RD, Steel DG and Gafni A 2014 Structural evolution and membrane interactions of Alzheimer’s amyloid-beta peptide oligomers: new knowledge from single-molecule fluorescence studies. Protein Sci. 23 869–883

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson RD, Schauerte JA, Wisser KC, Gafni A and Steel DG 2011 Direct observation of single amyloid-beta (1–40) oligomers on live cells: binding and growth at physiological concentrations. PLoS ONE 6 e23970

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson RD, Schauerte JA, Chang CC, Wisser KC, Althaus JC, Carruthers CJ, Sutton MA, Steel DG and Gafni A 2013 Single-molecule imaging reveals abeta42:abeta40 ratio-dependent oligomer growth on neuronal processes. Biophys. J. 104 894–903

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kerssemakers JW, Munteanu EL, Laan L, Noetzel TL, Janson ME and Dogterom M 2006 Assembly dynamics of microtubules at molecular resolution. Nature 442 709–712

    Article  PubMed  CAS  Google Scholar 

  • Magde D, Webb WW and Elson E 1972 Thermodynamic fluctuations in a reacting system – measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29 705

    Article  CAS  Google Scholar 

  • Maiti S, Haupts U and Webb WW 1997 Fluorescence correlation spectroscopy: diagnostics for sparse molecules. Proc. Natl. Acad. Sci. USA 94 11753–11757

    Article  PubMed  CAS  Google Scholar 

  • Nag S, Chen J, Irudayaraj J and Maiti S 2010 Measurement of the attachment and assembly of small amyloid-beta oligomers on live cell membranes at physiological concentrations using single-molecule tools. Biophys. J. 99 1969–1975

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nag S, Sarkar B, Bandyopadhyay A, Sahoo B, Sreenivasan VK, Kombrabail M, Muralidharan C and Maiti S 2011 Nature of the amyloid-beta monomer and the monomer–oligomer equilibrium. J. Biol. Chem. 286 13827–13833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nag S, Sarkar B, Chandrakesan M, Abhyanakar R, Bhowmik D, Kombrabail M, Dandekar S, Lerner E, Haas E and Maiti S 2013 A folding transition underlies the emergence of membrane affinity in amyloid-β. Phys. Chem. Chem. Phys. 15 19129–19133

    Article  PubMed  CAS  Google Scholar 

  • Sahoo B, Nag S, Sengupta P and Maiti S 2009 On the stability of the soluble amyloid aggregates. Biophys. J. 97 1454–1460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahoo B, Balaji J, Nag S, Kaushalya SK and Maiti S 2008 Protein aggregation probed by two-photon fluorescence correlation spectroscopy of native tryptophan. J. Chem. Phys. 129 075103

    Article  PubMed  CAS  Google Scholar 

  • Sarkar B, Das AK and Maiti S 2013 Thermodynamically stable amyloid-β monomers have much lower membrane affinity than the small oligomers. Front. Physiol. 4 84

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sengupta P, Balaji J and Maiti S 2002 Measuring diffusion in cell membranes by fluorescence correlation spectroscopy. Methods 27 374–387

    Article  PubMed  CAS  Google Scholar 

  • Sengupta P, Garai K, Balaji J, Periasamy N and Maiti S 2003a Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy. Biophys. J. 84 1977–1984

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sengupta P, Garai K, Sahoo B, Shi Y, Callaway DJ and Maiti S 2003b The amyloid beta peptide (A-beta(1–40)) is thermodynamically soluble at physiological concentrations. Biochemistry 42 10506–10513

    Article  PubMed  CAS  Google Scholar 

  • Zhang H and Guo P 2014 Single molecule photobleaching (SMPB) technology for counting of RNA, DNA, protein and other molecules in nanoparticles and biological complexes by TIRF instrumentation. Methods 67 169–176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zijlstra N, Claessens MM, Blum C and Subramaniam V 2014 Elucidating the aggregation number of dopamine-induced alpha-synuclein oligomeric assemblies. Biophys. J. 106 440–446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zijlstra N, Blum C, Segers-Nolten IM, Claessens MM and Subramaniam V 2012 Molecular composition of sub-stoichiometrically labeled alpha-synuclein oligomers determined by single-molecule photobleaching. Angew Chem. Int. Ed. Engl. 51 8821–8824

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Anoop Rawat for preparing the IAPP peptide and Anustup Chakraborty for his help with the Chung–Kennedy algorithm for fitting the step photobleaching data. This work was supported by intramural grants from the Tata Institute of Fundamental Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Maiti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, S., Maiti, S. Single-molecule photobleaching: Instrumentation and applications. J Biosci 43, 447–454 (2018). https://doi.org/10.1007/s12038-018-9770-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-018-9770-5

Keywords

Navigation