Skip to main content
Log in

Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Protein scaffolds as essential backbones for organization of supramolecular signalling complexes are a recurrent theme in several model systems. Scaffold proteins preferentially employ linear peptide binding motifs for recruiting their interaction partners. PDZ domains are one of the more commonly encountered peptide binding domains in several proteins including those involved in scaffolding functions. This domain is known for its promiscuity both in terms of ligand selection, mode of interaction with its ligands as well as its association with other protein interaction domains. PDZ domains are subject to several means of regulations by virtue of their functional diversity. Additionally, the PDZ domains are refractive to the effect of mutations and maintain their three-dimensional architecture under extreme mutational load. The biochemical and biophysical basis for this selectivity as well as promiscuity has been investigated and reviewed extensively. The present review focuses on the plasticity inherent in PDZ domains and its implications for modular organization as well as evolution of cellular signalling pathways in higher eukaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Adachi M, Hamazaki Y, Kobayashi Y, Itoh M, Tsukita S, Furuse M and Tsukita S 2009 Similar and distinct properties of MUPP1 and Patj, two homologous PDZ domain-containing tight-junction proteins. Mol. Cell Biol. 29 2372–2389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andreeva A, Howorth D, Chandonia J-M, Brenner SE, Hubbard TJ, Chothia C and Murzin AG 2008 Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res. 36 D419–D425

    Article  CAS  PubMed  Google Scholar 

  • Bach A, Stuhr-Hansen N, Thorsen TS, Bork N, Moreira IS, Frydenvang K, Padrah S, Christensen SB, Madsen KL and Weinstein H 2010 Structure–activity relationships of a small-molecule inhibitor of the PDZ domain of PICK1. Org. Biomol. Chem. 8 4281–4288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bakal CJ and Davies JE 2000 No longer an exclusive club: eukaryotic signalling domains in bacteria. Trends Cell Biol. 10 32–38

    Article  CAS  PubMed  Google Scholar 

  • Basdevant N, Weinstein H and Ceruso M 2006 Thermodynamic basis for promiscuity and selectivity in protein–protein interactions: PDZ domains, a case study. J. Am. Chem. Soc. 128 12766–12777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basu MK, Carmel L, Rogozin IB and Koonin EV 2008 Evolution of protein domain promiscuity in eukaryotes. Genome Res. 18 449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertaso F, Zhang C, Scheschonka A, De Bock F, Fontanaud P, Marin P, Huganir RL, Betz H, Bockaert J and Fagni L 2008 PICK1 uncoupling from mGluR7a causes absence-like seizures. Nat. Neurosci. 11 940–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bezprozvanny I and Maximov A 2001 Classification of PDZ domains. FEBS Lett. 509 457–462

    Article  CAS  PubMed  Google Scholar 

  • Bhat MA, Izaddoost S, Lu Y, Cho K-O, Choi K-W and Bellen HJ 1999 Discs Lost, a novel multi-PDZ domain protein, establishes and maintains epithelial polarity. Cell 96 833–845

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya S, Ju JH, Orlova N, Khajeh JA, Cowburn D and Bu Z 2013 Ligand-induced dynamic changes in extended PDZ domains from NHERF1. J. Mol. Biol. 425 2509–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya RP, Reményi A, Good MC, Bashor CJ, Falick AM and Lim WA 2006 The Ste5 scaffold allosterically modulates signaling output of the yeast mating pathway. Science 311 822–826

    Article  CAS  PubMed  Google Scholar 

  • Bilder D and Perrimon N 2000 Localization of apical epithelial determinants by the basolateral PDZ protein Scribble. Nature 403 676–680

    Article  CAS  PubMed  Google Scholar 

  • Botlani M and Varma S 2017 Incorporation of multi-state information improves molecular modelling of dynamic allostery: a case study of PDZ domains computational quantitative characterization of entropic signaling pathways in proteins: a case study on human PDZ2 domain of PTP1E. Biophys. J. 112 496a

    Article  Google Scholar 

  • Carelli FN, Hayakawa T, Go Y, Imai H, Warnefors M and Kaessmann H 2016 The life history of retrocopies illuminates the evolution of new mammalian genes. Genome Res. 26 301–314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castagnoli L, Costantini A, Dall’Armi C, Gonfloni S, Montecchi-Palazzi L, Panni S, Paoluzi S, Santonico E and Cesareni G 2004 Selectivity and promiscuity in the interaction network mediated by protein recognition modules. FEBS Lett. 567 74–79

    Article  CAS  PubMed  Google Scholar 

  • Chang BH, Gujral TS, Karp ES, BuKhalid R, Grantcharova VP and MacBeath G 2011 A systematic family-wide investigation reveals that ∼ 30% of mammalian PDZ domains engage in PDZ-PDZ interactions. Chem. Biol. 18 1143–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-H, Lee A, Liao C-P, Liu Y-W and Pan C-L 2014 RHGF-1/PDZ-RhoGEF and retrograde DLK-1 signaling drive neuronal remodeling on microtubule disassembly. Proc. Natl. Acad. Sci. 111 16568–16573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JR, Chang BH, Allen JE, Stiffler MA and MacBeath G 2008 Predicting PDZ domain–peptide interactions from primary sequences. Nat. Biotechnol. 26 1041–1045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Krinsky BH and Long M 2013 New genes as drivers of phenotypic evolution. Nat. Rev. Genet. 14 645–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Longgood JC, Michnoff C, Wei S, Frantz DE and Bezprozvanny L 2007 High-throughput screen for small molecule inhibitors of Mint1-PDZ domains. Assay Drug Dev. Technol. 5 769–784

    Article  CAS  PubMed  Google Scholar 

  • Chi CN, Engström Å, Gianni S, Larsson M and Jemth P 2006 Two conserved residues govern the salt and pH dependencies of the binding reaction of a PDZ domain. J. Biol. Chem. 281 36811–36818

    Article  CAS  PubMed  Google Scholar 

  • Christopherson KS, Hillier BJ, Lim WA and Bredt DS 1999 PSD-95 Assembles a ternary complex with the N-methyl-D-aspartic acid receptor and a bivalent neuronal NO synthase PDZ domain. J. Biol. Chem. 274 27467–27473

    Article  CAS  PubMed  Google Scholar 

  • Clifton BE and Jackson CJ 2016 Ancestral protein reconstruction yields insights into adaptive evolution of binding specificity in solute-binding proteins. Cell Chem. Biol. 23 236–245

    Article  CAS  PubMed  Google Scholar 

  • Cohen-Gihon I, Fong JH, Sharan R, Nussinov R, Przytycka TM and Panchenko AR 2011 Evolution of domain promiscuity in eukaryotic genomes—a perspective from the inferred ancestral domain architectures. Mol. BioSyst. 7 784–792

    Article  CAS  PubMed  Google Scholar 

  • Corbi-Verge C and Kim PM 2016 Motif mediated protein-protein interactions as drug targets. Cell Commun. Signal. 14 8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Daniels DL, Cohen AR, Anderson JM and Brünger AT 1998 Crystal structure of the hCASK PDZ domain reveals the structural basis of class II PDZ domain target recognition. Nat. Struct. Mol. Biol. 5 317–325

    Article  CAS  Google Scholar 

  • Davey NE, Cyert MS and Moses AM 2015 Short linear motifs–ex nihilo evolution of protein regulation. Cell Commun. Signal. 13 43

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Deng C-Y, Deng A-H, Sun S-T, Wang L, Wu J, Wu Y, Chen X-Y, Fang R-X, Wen T-Y and Qian W 2014 The periplasmic PDZ domain–containing protein Prc modulates full virulence, envelops stress responses and directly interacts with dipeptidyl peptidase of Xanthomonas oryzae pv. oryzae. Mol. Plant-Microb. Interact. 27 101–112

    Article  CAS  Google Scholar 

  • Dev KK 2004 Making protein interactions druggable: targeting PDZ domains. Nat. Rev. Drug Discov. 3 1047–1056

    Article  CAS  PubMed  Google Scholar 

  • Dev KK 2007 PDZ domain protein-protein interactions: a case study with PICK1. Curr. Topics Med. Chem. 7 3–20

    Article  CAS  Google Scholar 

  • Doolittle RF 1995 The multiplicity of domains in proteins. Annu. Rev. Biochem. 64 287–314

    Article  CAS  PubMed  Google Scholar 

  • Doyle DA, Lee A, Lewis J, Kim E, Sheng M and MacKinnon R 1996 Crystal structures of a complexed and peptide-free membrane protein–binding domain: molecular basis of peptide recognition by PDZ. Cell 85 1067–1076.

    Article  CAS  PubMed  Google Scholar 

  • Du X, Li Y, Xia Y-L, Ai S-M, Liang J, Sang P, Ji X-L and Liu S-Q 2016 Insights into protein–ligand interactions: mechanisms, models and methods. Int. J. Mol. Sci. 17 144

    Article  PubMed Central  CAS  Google Scholar 

  • Ehrlich S, Göller AH and Grimme S 2017 Towards full quantum‐mechanics‐based protein–ligand binding affinities. ChemPhysChem 18 898–905.

    Article  CAS  PubMed  Google Scholar 

  • Elkins JM, Gileadi C, Shrestha L, Phillips C, Wang J, Muniz JR and Doyle DA 2010 Unusual binding interactions in PDZ domain crystal structures help explain binding mechanisms. Protein Science 19 731–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst A, Appleton BA, Ivarsson Y, Zhang Y, Gfeller D, Wiesmann C and Sidhu SS 2014 A structural portrait of the PDZ domain family. J. Mol. Biol. 426 3509–3519

    Article  CAS  PubMed  Google Scholar 

  • Ernst A, Gfeller D, Kan Z, Seshagiri S, Kim PM, Bader GD and Sidhu SS 2010 Coevolution of PDZ domain–ligand interactions analyzed by high-throughput phage display and deep sequencing. Mol. BioSyst. 6 1782–1790

    Article  CAS  PubMed  Google Scholar 

  • Facciuto F, Cavatorta AL, Valdano MB, Marziali F and Gardiol D 2012 Differential expression of PDZ domain‐containing proteins in human diseases–challenging topics and novel issues. FEBS J. 279 3538–3548

    Article  CAS  PubMed  Google Scholar 

  • Feng W and Zhang M 2009 Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nat. Rev. Neurosci. 10 87–99

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein AV and Janin J. 1989 The price of lost freedom: entropy of bimolecular complex formation. Protein Eng. 3 1–3

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M and Sangrador-Vegas A 2016 The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 44 D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Fournane S, Charbonnier S, Chapelle A, Kieffer B, Orfanoudakis G, Travé G, Masson M and Nominé Y 2011 Surface plasmon resonance analysis of the binding of high‐risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI‐1. J. Mol. Recog. 24 511–23

    Article  CAS  Google Scholar 

  • Franco OL 2011 Peptide promiscuity: an evolutionary concept for plant defense. FEBS Lett. 585 995–1000

    Article  CAS  PubMed  Google Scholar 

  • Fuentes EJ, Der CJ and Lee AL 2004 Ligand-dependent dynamics and intramolecular signaling in a PDZ domain. J. Mol. Biol. 335 1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Galande S, Purbey PK, Notani D and Kumar PP 2007 The third dimension of gene regulation: organization of dynamic chromatin loopscape by SATB1. Curr. Opin. Genetics Dev. 17 408–414

    Article  CAS  Google Scholar 

  • Gardiner J, Overall R and Marc J 2011 PDZ domain proteins: ‘dark matter’ of the plan proteome? Mol. Plant 4 933–937

    CAS  Google Scholar 

  • Gardiol D 2012 PDZ‐containing proteins as targets in human pathologies. FEBS J. 279 3529

    Article  CAS  PubMed  Google Scholar 

  • Garrido‐Urbani S, Garg P, Ghossoub R, Arnold R, Lembo F, Sundell GN, Kim PM, Lopez M, Zimmermann P and Sidhu SS 2016 Proteomic peptide phage display uncovers novel interactions of the PDZ1‐2 supramodule of syntenin. FEBS Lett. 590 3–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerek ZN and Ozkan SB 2010 A flexible docking scheme to explore the binding selectivity of PDZ domains. Protein Sci. 19 914–928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gerek ZN and Ozkan SB 2011 Change in allosteric network affects binding affinities of PDZ domains: analysis through perturbation response scanning. PLoS Comput. Biol. 7 e1002154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giallourakis C, Cao Z, Green T, Wachtel H, Xie X, Lopez-Illasaca M, Daly M, Rioux J and Xavier R 2006 A molecular-properties-based approach to understanding PDZ domain proteins and PDZ ligands. Genome Res. 16 1056–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianni S, Walma T, Arcovito A, Calosci N, Bellelli A, Engström Å, Travaglini-Allocatelli C, Brunori M, Jemth P and Vuister GW 2006 Demonstration of long-range interactions in a PDZ domain by NMR, kinetics and protein engineering. Structure 14 1801–1809

    Article  CAS  PubMed  Google Scholar 

  • Good MC, Zalatan JG and Lim WA 2011 Scaffold proteins: hubs for controlling the flow of cellular information. Science 332 680–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris BZ, Lau FW, Fujii N, Guy RK and Lim WA 2003 Role of electrostatic interactions in PDZ domain ligand recognition. Biochemistry 42 2797–2805

    Article  CAS  PubMed  Google Scholar 

  • Harris BZ and Lim WA 2001 Mechanism and role of PDZ domains in signaling complex assembly. J. Cell Sci. 114 3219–3231

    CAS  PubMed  Google Scholar 

  • Harris KP, Akbergenova Y, Cho RW, Baas-Thomas MS and Littleton JT 2016 Shank modulates postsynaptic Wnt signaling to regulate synaptic development. J. Neurosci. 36 5820–5832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hildebrand JD and Soriano P 1999 Shroom, a PDZ domain–containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99 485–497

    Article  CAS  PubMed  Google Scholar 

  • Ho BK and Agard DA 2010 Conserved tertiary couplings stabilize elements in the PDZ fold, leading to characteristic patterns of domain conformational flexibility. Protein Sci. 19 398–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honkanen A, Immonen E-V, Salmela I, Heimonen K and Weckström M 2017 Insect photoreceptor adaptations to night vision. Philos. Trans. R. Soc. B 372 20160077

    Article  Google Scholar 

  • Hu J, Neiswinger J, Zhang J, Zhu H and Qian J 2015 Systematic prediction of scaffold proteins reveals new design principles in scaffold-mediated signal transduction. PLoS Comput. Biol. 11 e1004508

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hung AY and Sheng M 2002 PDZ domains: structural modules for protein complex assembly. J. Biol. Chem. 277 5699–5702

    Article  CAS  PubMed  Google Scholar 

  • Huttlin EL, Bruckner RJ, Paulo JA, Cannon JR, Ting L, Baltier K, Colby G, Gebreab F, Gygi MP and Parzen H 2017 Architecture of the human interactome defines protein communities and disease networks. Nature 545 505–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inaba K, Suzuki M, Maegawa K, Akiyama S, Ito K and Akiyama Y 2008 A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of Escherichia coli. J. Biol. Chem. 283 35042–35052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh K, Brott BK, Bae G-U, Ratcliffe MJ and Sokol SY 2005 Nuclear localization is required for Dishevelled function in Wnt/β-catenin signaling. J. Biol. 4 3

    Article  PubMed  PubMed Central  Google Scholar 

  • Ivarsson Y 2012 Plasticity of PDZ domains in ligand recognition and signaling. FEBS Lett. 586 2638–2647

    Article  CAS  PubMed  Google Scholar 

  • Ivarsson Y, Arnold R, McLaughlin M, Nim S, Joshi R, Ray D, Liu B, Teyra J, Pawson T and Moffat J 2014 Large-scale interaction profiling of PDZ domains through proteomic peptide-phage display using human and viral phage peptidomes. Proc. Natl. Acad. Sci. USA 111 2542–2547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivarsson Y, Wawrzyniak AM, Kashyap R, Polanowska J, Betzi S, Lembo F, Vermeiren E, Chiheb D, Lenfant N and Morelli X 2013 Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments. PLoS ONE 8 e54581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwanczyk J, Damjanovic D, Kooistra J, Leong V, Jomaa A, Ghirlando R and Ortega J 2007 Role of the PDZ domains in Escherichia coli DegP protein. J. Bacteriol. 189 3176–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James CD and Roberts S 2016 Viral interactions with PDZ domain-containing proteins—an oncogenic trait? Pathogens 5 8

    Article  PubMed Central  Google Scholar 

  • Javier RT and Rice AP 2011 Emerging theme: cellular PDZ proteins as common targets of pathogenic viruses. J. Virol. 85 11544–11556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeleń F, Oleksy A, Śmietana K and Otlewski J 2003 PDZ domains-common players in the cell signaling. Acta Biochim. Polonica 50 985–1017

    Google Scholar 

  • Jemth P and Gianni S 2007 PDZ domains: folding and binding. Biochemistry 46 8701–8708

    Article  CAS  PubMed  Google Scholar 

  • Jepson JE, Shahidullah M, Liu D, Le Marchand SJ, Liu S, Wu MN, Levitan IB, Dalva MB and Koh K 2014 Regulation of synaptic development and function by the Drosophila PDZ protein Dyschronic. Development 141 4548–4557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelil A, Levy ED and Michnick SW 2016 Evolution of domain–peptide interactions to coadapt specificity and affinity to functional diversity. Proc. Natl. Acad. Sci. 113 E3862–E3871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennedy MB 1995 Origin of Pdz (Dhr Glgf) domains. Trends Biochem. Sci. 20 350

    Article  CAS  PubMed  Google Scholar 

  • Kennedy MB and Mastro TL 2017 Liquid phase transition in the postsynaptic density? Trends Biochem. Sci. 42 2–4

    Article  CAS  PubMed  Google Scholar 

  • Keskin O, Gursoy A, Ma B and Nussinov R 2008 Principles of protein–protein interactions: what are the preferred ways for proteins to interact? Chem. Rev. 108 1225–1244

    Article  CAS  PubMed  Google Scholar 

  • Khan Z and Lafon M 2014 PDZ domain-mediated protein interactions: therapeutic targets in neurological disorders. Curr. Med. Chem. 21 2632–2641

    Article  CAS  PubMed  Google Scholar 

  • Kim E and Sheng M 2004 PDZ domain proteins of synapses. Nat. Rev. Neurosci. 5 771–781

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Kim I, Han SK, Bowie JU and Kim S 2012a Network rewiring is an important mechanism of gene essentiality change. Sci. Rep. 2 900

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim J, Kim I, Yang J-S, Shin Y-E, Hwang J, Park S, Choi YS and Kim S 2012b Rewiring of PDZ domain-ligand interaction network contributed to eukaryotic evolution. PLoS Genet. 8 e1002510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kley J, Schmidt B, Boyanov B, Stolt-Bergner PC, Kirk R, Ehrmann M, Knopf RR, Naveh L, Adam Z and Clausen T 2011 Structural adaptation of the plant protease Deg1 to repair photosystem II during light exposure. Nat. Struct. Mol. Biol. 18 728–731

    Article  CAS  PubMed  Google Scholar 

  • Kumawat A and Chakrabarty S 2017 Hidden electrostatic basis of dynamic allostery in a PDZ domain. Proc. Natl. Acad. Sci. 114 E5825–E5834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurakin A, Swistowski A, Wu SC and Bredesen DE 2007 The PDZ domain as a complex adaptive system. PLoS ONE 2 e953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuriyan J and Cowburn D 1997 Modular peptide recognition domains in eukaryotic signaling. Annu. Rev. Biophys. Biomol. Struct. 26 259–288

    Article  CAS  PubMed  Google Scholar 

  • Lai A, Sato PM and Peisajovich SG 2015 Evolution of synthetic signaling scaffolds by recombination of modular protein domains. ACS Synth. Biol. 4 714–722

    Article  CAS  Google Scholar 

  • Langeberg LK and Scott JD 2015 Signalling scaffolds and local organization of cellular behaviour. Nat. Rev. Mol. Cell Biol. 16 232–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lees JG, Dawson NL, Sillitoe I and Orengo CA 2016 Functional innovation from changes in protein domains and their combinations. Curr. Opin. Struct. Biol. 38 44–52

    Article  CAS  PubMed  Google Scholar 

  • Letunic I, Doerks T and Bork P 2012 SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res. 40 D302–D305

    Article  CAS  PubMed  Google Scholar 

  • Levchenko A, Bruck J and Sternberg PW 2000 Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. 97 5818–5823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, He Y, Weck ML, Lu Q, Tyska MJ and Zhang M 2017 Structure of Myo7b/USH1C complex suggests a general PDZ domain binding mode by MyTH4-FERM myosins. Proc. Natl. Acad. Sci. 114 E3776–E3785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin J and Weiss A 2001 Identification of the minimal tyrosine residues required for linker for activation of T cell function. J. Biol. Chem. 276 29588–29595

    Article  CAS  PubMed  Google Scholar 

  • Locasale JW, Shaw AS and Chakraborty AK 2007 Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proc. Natl. Acad. Sci. 104 13307–13312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu C, Knecht V and Stock G 2016 Long-range conformational response of a PDZ domain to ligand binding and release: a molecular dynamics study. J. Chem. Theory Comput. 12 870–878

    Article  CAS  PubMed  Google Scholar 

  • Luck K, Charbonnier S and Travé G 2012 The emerging contribution of sequence context to the specificity of protein interactions mediated by PDZ domains. FEBS Lett. 586 2648–2661

    Article  CAS  PubMed  Google Scholar 

  • Luck K, Fournane S, Kieffer B, Masson M, Nominé Y and Travé G 2011 Putting into practice domain-linear motif interaction predictions for exploration of protein networks. PLoS ONE 6 e25376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludford-Menting MJ, Oliaro J, Sacirbegovic F, Cheah ET-Y, Pedersen N, Thomas SJ, Pasam A, Iazzolino R, Dow LE and Waterhouse NJ 2005 A network of PDZ-containing proteins regulates T cell polarity and morphology during migration and immunological synapse formation. Immunity 22 737–748

    Article  CAS  PubMed  Google Scholar 

  • Mañes S, Fuentes G, Peregil RM, Rojas AM and Lacalle RA 2010 An isoform-specific PDZ-binding motif targets type I PIP5 kinase beta to the uropod and controls polarization of neutrophil-like HL60 cells. FASEB J. 24 3381–3392

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin Jr RN, Poelwijk FJ, Raman A, Gosal WS and Ranganathan R 2012 The spatial architecture of protein function and adaptation. Nature 491 138–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro P and Feng G 2017 SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat. Rev. Neurosci. 18 147–157

    Article  CAS  PubMed  Google Scholar 

  • Moore CD, Ajala OZ and Zhu H 2016 Applications in high-content functional protein microarrays. Curr. Opin. Chem. Biol. 30 21–27

    Article  CAS  PubMed  Google Scholar 

  • Morra G, Genoni A and Colombo G 2014 Mechanisms of differential allosteric modulation in homologous proteins: insights from the analysis of internal dynamics and energetics of PDZ domains. J. Chem. Theory Comput. 10 5677–5689

    Article  CAS  PubMed  Google Scholar 

  • Münz M, Hein J and Biggin PC 2012 The role of flexibility and conformational selection in the binding promiscuity of PDZ domains. PLoS Comput. Biol. 8 e1002749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murray PS and Zaidel-Bar R 2014 Pre-metazoan origins and evolution of the cadherin adhesome. Biol. Open 3 1183–1195

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagahata T, Shimada T, Harada A, Nagai H, Onda M, Yokoyama S, Shiba T, Jin E, Kawanami O and Emi M 2003 Amplification, up‐regulation and over‐expression of DVL‐1 the human counterpart of the Drosophila disheveled gene, in primary breast cancers. Cancer Sci. 94 515–518

    Article  CAS  PubMed  Google Scholar 

  • Nakagoshi H, Hoshi M, Nabeshima Y-i. and Matsuzaki F 1998 A novel homeobox gene mediates the Dpp signal to establish functional specificity within target cells. Gene Dev. 12 2724–2734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niv MY and Weinstein H 2005 A flexible docking procedure for the exploration of peptide binding selectivity to known structures and homology models of PDZ domains. J. Am. Chem. Soc. 127 14072–14079

    Article  CAS  PubMed  Google Scholar 

  • Notani D, Ramanujam PL, Kumar PP, Gottimukkala KP, Kumar-Sinha C and Galande S 2011 N-terminal PDZ-like domain of chromatin organizer SATB1 contributes towards its function as transcription regulator. J. Biosci. 36 461–469

    Article  CAS  PubMed  Google Scholar 

  • Nourry C, Grant S and Borg J-P 2003 PDZ domain proteins: plug and play. Sci. STKE 2003 RE7

  • Novak KA, Fujii N and Guy RK 2002 Investigation of the PDZ domain ligand binding site using chemically modified peptides. Bioorgan. Med. Chem. Lett. 12 2471–2474

    Article  CAS  Google Scholar 

  • Oka T and Sudol M 2009 Nuclear localization and pro‐apoptotic signaling of YAP2 require intact PDZ‐binding motif. Gene. Cells 14 607–615

    Article  CAS  Google Scholar 

  • Park S-H, Zarrinpar A and Lim WA 2003 Rewiring MAP kinase pathways using alternative scaffold assembly mechanisms. Science 299 1061–1064

    Article  CAS  PubMed  Google Scholar 

  • Pascoe HG, Gutowski S, Chen H, Brautigam CA, Chen Z, Sternweis PC and Zhang X 2015 Secondary PDZ domain-binding site on class B plexins enhances the affinity for PDZ–RhoGEF Proc. Natl. Acad. Sci. 112 14852–14857

    Article  CAS  Google Scholar 

  • Patil A, Kinoshita K and Nakamura H 2010 Hub promiscuity in protein-protein interaction networks. Int. J. Mol. Sci. 11 1930–1943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pawson T 1995 Protein modules and signalling networks. Nature 373 573

    Article  CAS  PubMed  Google Scholar 

  • Pawson T and Nash P 2003 Assembly of cell regulatory systems through protein interaction domains. Science 300 445–452

    Article  CAS  PubMed  Google Scholar 

  • Petit CM, Zhang J, Sapienza PJ, Fuentes EJ and Lee AL 2009 Hidden dynamic allostery in a PDZ domain. Proc. Natl. Acad. Sci. 106 18249–18254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pincus D, Resnekov O and Reynolds KA 2017 An evolution-based strategy for engineering allosteric regulation. Phys. Biol. 14 025002

    Article  PubMed  Google Scholar 

  • Ponting CP 1997 Evidence for PDZ domains in bacteria, yeast and plants. Protein Science 6 464–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ponting CP, Phillips C, Davies KE and Blake DJ 1997 PDZ domains: targeting signalling molecules to sub‐membranous sites. Bioessays 19 469–479

    Article  CAS  PubMed  Google Scholar 

  • Purbey PK, Singh S, Kumar PP, Mehta S, Ganesh K, Mitra D and Galande S 2008 PDZ domain-mediated dimerization and homeodomain-directed specificity are required for high-affinity DNA binding by SATB1. Nucleic Acids Res. 36 2107–2122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranganathan R and Ross EM 1997 PDZ domain proteins: scaffolds for signaling complexes. Curr. Biol. 7 R770–R773

    Article  CAS  PubMed  Google Scholar 

  • Reina J, Lacroix E, Hobson SD, Fernandez-Ballester G, Rybin V, Schwab MS, Serrano L and Gonzalez C 2002 Computer-aided design of a PDZ domain to recognize new target sequences. Nat. Struct. Mol. Biol. 9 621–627

    CAS  Google Scholar 

  • Reynolds KA, McLaughlin RN and Ranganathan R 2011 Hot spots for allosteric regulation on protein surfaces. Cell 147 1564–1575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roh MH and Margolis B 2003 Composition and function of PDZ protein complexes during cell polarization. Am. J. Physiol. Renal Physiol. 285 F377–F387

    Article  PubMed  Google Scholar 

  • Rosenfeld L, Heyne M, Shifman JM and Papo N 2016 Protein engineering by combined computational and in vitro evolution approaches. Trends Biochem. Sci. 41 421–433

    Article  CAS  PubMed  Google Scholar 

  • Rothenberg SM, Mohapatra G, Rivera MN, Winokur D, Greninger P, Nitta M, Sadow PM, Sooriyakumar G, Brannigan BW and Ulman MJ 2010 A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers. Cancer Res. 70 2158–2164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saha A and Deshaies RJ 2008 Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32 21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sain N and Mohanty D 2016 modPDZpep: a web resource for structure based analysis of human PDZ-mediated interaction networks. Biol. Direct 11 48

    Article  PubMed  PubMed Central  Google Scholar 

  • Sakarya O, Conaco C, Eğecioğlu Ö, Solla S, Oakley T and Kosik K 2010 Evolutionary expansion and specialization of the PDZ domains. Mol. Biol. Evol. 27 1058–1069

    Article  CAS  PubMed  Google Scholar 

  • Schillinger C, Boisguerin P and Krause G 2009 Domain interaction footprint: a multi-classification approach to predict domain–peptide interactions. Bioinformatics 25 1632–1639

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Truschel S, Bachert C and Linstedt AD 2009 Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network. J. Cell Biol. 186 41–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheng R, Chen Y, Gee HY, Stec E, Melowic HR, Blatner NR, Tun MP, Kim Y, Källberg M and Fujiwara TK 2012 Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat. Commun. 3 1249

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shepherd TR, Klaus SM, Liu X, Ramaswamy S, DeMali KA and Fuentes EJ 2010 The Tiam1 PDZ domain couples to Syndecan1 and promotes cell–matrix adhesion. J. Mol. Biol. 398 730–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shieh B-H and Niemeyer B 1995 A novel protein encoded by the InaD gene regulates recovery of visual transduction in Drosophila. Neuron 14 201–210

    Article  CAS  PubMed  Google Scholar 

  • Sirin S, Apgar JR, Bennett EM and Keating AE 2016 AB‐Bind: antibody binding mutational database for computational affinity predictions. Protein Sci. 25 393–409

    Article  CAS  PubMed  Google Scholar 

  • Songyang Z, Fanning A, Fu C, Xu J, Marfatia S, Chishti A, Crompton A, Chan A, Anderson J and Cantley L 1997 Recognition of unique carboxyl-terminal motifs by distinct PDZ domains. Science 275 73–77

    Article  CAS  PubMed  Google Scholar 

  • Spellmon N, Holcomb J, Niu A, Choudhary V, Sun X, Zhang Y, Wan J, Doughan M, Hayden S and Hachem F 2017 Structural basis of PDZ-mediated chemokine receptor CXCR2 scaffolding by guanine nucleotide exchange factor PDZ-RhoGEF Biochem. Biophys. Res. Commun. 485 529–534

    Article  CAS  Google Scholar 

  • Stiffler MA, Chen JR, Grantcharova VP, Lei Y, Fuchs D, Allen JE, Zaslavskaia LA and MacBeath G 2007 PDZ domain binding selectivity is optimized across the mouse proteome. Science 317 364–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stiffler MA, Grantcharova VP, Sevecka M and MacBeath G 2006 Uncovering quantitative protein interaction networks for mouse PDZ domains using protein microarrays. J. Am. Chem. Soc. 128 5913–5922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker NL, Christopherson KS, Byungdoo A, Schatz PJ and Raab RW 1997 PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. Nat. Biotechnol. 15 336–342

    Article  CAS  PubMed  Google Scholar 

  • Sweet ES, Previtera ML, Fernández JR, Charych EI, Tseng C-Y, Kwon M, Starovoytov V, Zheng JQ and Firestein BL 2011 PSD-95 alters microtubule dynamics via an association with EB3. J. Neurosci. 31 1038–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taherzadeh G, Yang Y, Zhang T, Liew AWC and Zhou Y 2016 Sequence‐based prediction of protein–peptide binding sites using support vector machine. J. Comput. Chem. 37 1223–1229

    Article  CAS  PubMed  Google Scholar 

  • te Velthuis AJ, Sakalis PA, Fowler DA and Bagowski CP 2011 Genome-wide analysis of PDZ domain binding reveals inherent functional overlap within the PDZ interaction network. PLoS ONE 6 e16047

    Article  CAS  Google Scholar 

  • Ting JT, Peça J and Feng G 2012 Functional consequences of mutations in postsynaptic scaffolding proteins and relevance to psychiatric disorders. Annu. Rev. Neurosci. 35 49–71

    Article  CAS  PubMed  Google Scholar 

  • Tochio H, Mok Y-K, Zhang Q, Kan H-M, Bredt DS and Zhang M 2000 Formation of nNOS/PSD-95 PDZ dimer requires a preformed β-finger structure from the nNOS PDZ domain. J. Mol. Biol. 303 359–370

    Article  CAS  PubMed  Google Scholar 

  • Tomasetti C, Iasevoli F, Buonaguro EF, De Berardis D, Fornaro M, Fiengo ALC, Martinotti G, Orsolini L, Valchera A and Di Giannantonio M 2017 Treating the synapse in major psychiatric disorders: the role of postsynaptic density network in dopamine-glutamate interplay and psychopharmacologic drugs molecular actions. Int. J. Mol. Sci. 18 135

    Article  PubMed Central  CAS  Google Scholar 

  • Tonikian R, Zhang Y, Boone C and Sidhu SS 2007 Identifying specificity profiles for peptide recognition modules from phage-displayed peptide libraries. Nat. Protocols 2 1368–1386

    Article  CAS  PubMed  Google Scholar 

  • Tonikian R, Zhang Y, Sazinsky SL, Currell B, Yeh J-H, Reva B, Held HA, Appleton BA, Evangelista M and Wu Y 2008 A specificity map for the PDZ domain family. PLoS Biol. 6 e239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tsunoda S, Sierralta J, Sun Y, Bodner R, Suzuki E, Becker A, Socolich M and Zuker CS 1997 A multivalent PDZ-domain protein assembles signalling complexes in a G-protein-coupled cascade. Nature 388 243–249

    Article  CAS  PubMed  Google Scholar 

  • Turner KB, Naciri J, Liu, JL Anderson GP, Goldman ER and Zabetakis D 2016 Next-generation sequencing of a single domain antibody repertoire reveals quality of phage display selected candidates. PLoS ONE 11 e0149393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vaccaro P and Dente L 2002 PDZ domains: troubles in classification. FEBS Lett. 512 345–346

    Article  CAS  PubMed  Google Scholar 

  • Vallejo D, Codocedo JF and Inestrosa NC 2017 Posttranslational modifications regulate the postsynaptic localization of PSD-95. Mol. Neurobiol. 54 1759–1776

    Article  CAS  PubMed  Google Scholar 

  • van Ham M and Hendriks W 2003 PDZ domains–glue and guide. Mol. Biol. Rep. 30 69–82

    Article  PubMed  Google Scholar 

  • Vaquero J, Ho-Bouldoires TN, Clapéron A and Fouassier L 2017 Role of the PDZ-scaffold protein NHERF1/EBP50 in cancer biology: from signaling regulation to clinical relevance. Oncogene 36 3067–3079

    Article  CAS  PubMed  Google Scholar 

  • Verpy E, Leibovici M, Zwaenepoel I, Liu X-Z, Gal A, Salem N, Mansour A, Blanchard S, Kobayashi I and Keats BJ 2000 A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C Nat. Genet. 26 51–55

    CAS  Google Scholar 

  • Walsh NP, Alba BM, Bose B, Gross CA and Sauer RT 2003 OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by its PDZ domain. Cell 113 61–71

    Article  CAS  PubMed  Google Scholar 

  • Wang CK, Pan L, Chen J and Zhang M 2010 Extensions of PDZ domains as important structural and functional elements. Protein Cell 1 737–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Zhang Q, Tochio H, Fan JS and Zhang M 2000 Formation of a native‐like β‐hairpin finger structure of a peptide from the extended PDZ domain of neuronal nitric oxide synthase in aqueous solution. FEBS J. 267 3116–3122

    CAS  Google Scholar 

  • Weijman JF, Kumar A, Jamieson SA, King CM, Caradoc-Davies TT, Ledgerwood EC, Murphy JM and Mace PD 2017 Structural basis of autoregulatory scaffolding by apoptosis signal-regulating kinase 1. Proc. Natl. Acad. Sci. 114 E2096–E2105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiedemann U, Boisguerin P, Leben R, Leitner D, Krause G, Moelling K, Volkmer-Engert R and Oschkinat H 2004 Quantification of PDZ domain specificity, prediction of ligand affinity and rational design of super-binding peptides. J. Mol. Biol. 343 703–718.

    Article  CAS  PubMed  Google Scholar 

  • Wilken C, Kitzing K, Kurzbauer R, Ehrmann M and Clausen T 2004 Crystal structure of the DegS stress sensor: How a PDZ domain recognizes misfolded protein and activates a protease. Cell 117 483–494

    Article  CAS  PubMed  Google Scholar 

  • Willatt L, Cox J, Barber J, Cabanas ED, Collins A, Donnai D, FitzPatrick DR, Maher E, Martin H and Parnau J 2005 3q29 microdeletion syndrome: clinical and molecular characterization of a new syndrome. Am. J. Hum. Genet. 77 154–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witzel F, Maddison LE and Blüthgen N 2012 How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front. Physiol. 3 475

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia J, Chung HJ, Wihler C, Huganir RL and Linden DJ 2000 Cerebellar long-term depression requires PKC-regulated interactions between GluR2/3 and PDZ domain–containing proteins. Neuron 28 499–510

    Article  CAS  PubMed  Google Scholar 

  • Yagi R, Chen LF, Shigesada K, Murakami Y and Ito Y 1999 A WW domain‐containing yes‐associated protein (YAP) is a novel transcriptional co‐activator. EMBO J. 18 2551–2562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F and Zhang M 2013 Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures. Biochem. J. 455 1–14

    Article  CAS  PubMed  Google Scholar 

  • Yu YB, Privalov PL and Hodges RS 2001 Contribution of translational and rotational motions to molecular association in aqueous solution. Biophys. J. 81 1632–1642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng M, Shang Y, Araki Y, Guo T, Huganir RL and Zhang M (2016a). Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity. Cell 166 1163–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng M, Shang Y, Guo T, He Q, Yung W-H, Liu K and Zhang M (2016b). A binding site outside the canonical PDZ domain determines the specific interaction between Shank and SAPAP and their function. Proc. Natl. Acad. Sci. 113 E3081–E3090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C-S, Bertaso F, Eulenburg V, Lerner-Natoli M, Herin GA, Bauer L, Bockaert J, Fagni L, Betz H and Scheschonka A 2008 Knock-in mice lacking the PDZ-ligand motif of mGluR7a show impaired PKC-dependent autoinhibition of glutamate release, spatial working memory deficits and increased susceptibility to pentylenetetrazol. J. Neurosci. 28 8604–8614

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Poplawski M, Yen K, Cheng H, Bloss E, Zhu X, Patel H and Mobbs CV 2009 Role of CBP and SATB-1 in aging, dietary restriction and insulin-like signaling. PLoS Biol. 7 e1000245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu J, Shang Y and Zhang M 2016 Mechanistic basis of MAGUK-organized complexes in synaptic development and signalling. Nat. Rev. Neurosci. 17 209–223

    Article  CAS  PubMed  Google Scholar 

  • Zucconi A, Panni S, Paoluzi S, Castagnoli L, Dente L and Cesareni G 2000 Domain repertoires as a tool to derive protein recognition rules. FEBS Lett. 480 49–54

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Centre of Excellence in Epigenetics Program (BT/01/COE/09/07) of the Department of Biotechnology, India, to SG. PRL acknowledges the support from IISER Pune.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Galande.

Additional information

Corresponding editor: B Jagadeeshwar Rao

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manjunath, G.P., Ramanujam, P.L. & Galande, S. Structure function relations in PDZ-domain-containing proteins: Implications for protein networks in cellular signalling. J Biosci 43, 155–171 (2018). https://doi.org/10.1007/s12038-017-9727-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-017-9727-0

Keywords

Navigation