Skip to main content

Advertisement

Log in

In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Regenerative medicine is an evolving interdisciplinary topic of research involving numerous technological methods that utilize stem cells to repair damaged tissues. Particularly, mesenchymal stem cells (MSCs) are a great tool in regenerative medicine because of their lack of tumorogenicity, immunogenicity and ability to perform immunomodulatory as well as anti-inflammatory functions. Numerous studies have investigated the role of MSCs in tissue repair and modulation of allogeneic immune responses. MSCs derived from different sources hold unique regenerative potential as they are self-renewing and can differentiate into chondrocytes, osteoblasts, adipocytes, cardiomyocytes, hepatocytes, endothelial and neuronal cells, among which neuronal-like cells have gained special interest. MSCs also have the ability to secrete multiple bioactive molecules capable of stimulating recovery of injured cells and inhibiting inflammation. In this review we focus on neural differentiation potential of MSCs isolated from different sources and how certain growth factors/small molecules can be used to derive neuronal phenotypes from MSCs. We also discuss the efficacy of MSCs when transplanted in vivo and how they can generate certain neurons and lead to relief or recovery of the diseased condition. Furthermore, we have tried to evaluate the appropriate merits of different sources of MSCs with respect to their propensity towards neurological differentiation as well as their effectiveness in preclinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AF:

amniotic fluid

AM:

amniotic membrane

BDNF:

brain-derived neurotrophic factor

bFGF:

basic fibroblast growth factor

BM:

bone marrow

BME:

β-mercaptoethanol

ChAT:

choline acetyltransferase

CTNF:

ciliaryneurotrophic factor

DA:

dopaminergic

EGF:

epithelium growth factor

FSL:

Flinders sensitive line

GDNF:

glial-derived neurotrophic factor

HCNP:

hippocampal cholinergic neurostimulating peptide

IBMX:

isobutylmethylxanthine

MSC:

mesenchymal stem cells

NGF:

nerve growth factor

NGF:

nerve growth factor

NIM:

neuronal induction medium

NIM:

neuronal induction medium

RA:

retinoic acid

rDHE:

rat denervated hippocampal extract

SHED:

stem cells from human exfoliated deciduous teeth

SLC:

Schwann like cells

TRAIL:

tumour necrosis factor-related apoptosis-inducing ligand

UPDRS:

Unified Parkinson’s Disease Rating Scale

WJ:

Wharton’s jelly

References

  • Allickson JG, Sanchez A, Yefimenko N, Borlongan CV and Sanberg PR 2011 Recent studies assessing the proliferative capability of a novel adult stem cell identified in menstrual blood. Open Stem Cell J. 3 4–10

    Article  PubMed Central  PubMed  Google Scholar 

  • Anghileri E, Marconi S, Pignatelli A, Cifelli P, Galie M, Sbarbati A, Krampera M, Belluzzi, et al. 2008 Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev. 17 909–916

    Article  CAS  PubMed  Google Scholar 

  • Arthur A, Rychkov G, Shi S, Koblar SA and Gronthos S 2008 Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem Cells 26 1787–1795

    Article  CAS  PubMed  Google Scholar 

  • Bae KS, Park JB, Kim HS, Kim DS, Park DJ and Kang SJ 2011 Neuron-like differentiation of bone marrow-derived mesenchymal stem cells. Yonsei Med. J. 52 401–412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barzilay R, Ben-Zur T, Bulvik S, Melamed E and Offen D 2009 Lentiviral delivery of LMX1a enhances dopaminergic phenotype in differentiated human bone marrow mesenchymal stem cells. Stem Cells Dev. 18 591–601

    Article  CAS  PubMed  Google Scholar 

  • Barzilay R, Melamed E and Offen D 2009 Introducing transcription factors to multipotentmesenchymal stem cells: making transdifferentiation possible. Stem Cells 27 2509–2515

    Article  CAS  PubMed  Google Scholar 

  • Bi Y, Gong M, Zhang X, Zhang X, Jiang W, Zhang Y, Chen J, Liu, et al. 2010 Pre-activation of retinoid signaling facilitates neuronal differentiation of mesenchymal stem cells. Dev. Growth Differ. 52 419–431

  • Boncoraglio GB, Bersano A, Candelise L, Reynolds BA and Parati EA 2010 Stem cell transplantation for ischemic stroke. Cochrane Database Syst. Rev. DOI: 10.1002/14651858.CD007231.pub2

    PubMed  Google Scholar 

  • Camp DM, Loeffler DA, Farrah DM, Borneman JN and LeWitt PA 2009 Cellular immune response to intrastriatally implanted allogenic bone marrow stromal cells in a rat model of Parkinson’s disease. J. Neuroinflammation 6 17

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen L, He DM and Zhang Y 2009 The differentiation of human placenta-derived mesenchymal stem cells into dopaminergic cells in vitro. Cell Mol. Biol. Lett. 14 528–536

    Article  CAS  PubMed  Google Scholar 

  • Choi SA, Hwang SK, Wang KC, Cho BK, Phi JH, Lee JY, Jung HW, Lee DH and Kim SK 2011 Therapeutic efficacy and safety of TRAIL-producing human adipose tissue-derived mesenchymal stem cells against experimental brainstem glioma. Neuro Oncol. 13 61–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choong PF, Mok PL, Cheong SK, Leong CF and Then KY 2007 Generating neuron-like cells from BM-derived mesenchymal stromal cells in vitro. Cytotherapy 9 170–183

    Article  CAS  PubMed  Google Scholar 

  • Das AK, Gopurappilly R and Parhar I 2011 Current status and prospective application of stemcell-based therapies for spinal cord injury. Curr. Stem Cell Res. Ther. 6 93–104

    Article  CAS  PubMed  Google Scholar 

  • Datta I, Mishra S, Mohanty L, Pulikkot S and Joshi PG 2011 Neuronal plasticity of human Wharton’s jelly mesenchymal stromal cells to the dopaminergic cell type compared with human bone marrow mesenchymal stromal cells. Cytotherapy 13 918–932

    Article  CAS  PubMed  Google Scholar 

  • DiMauro S and Schon EA 2008 Mitochondrial disorders in the nervous system. Annu. Rev. Neurosci. 31 91–123

    Article  CAS  PubMed  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, et al. 2006 Minimal criteria for defining multipotentmesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8 315–317

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL and Discher DE 2006 Matrix elasticity directs stem cell lineage specification. Cell 126 677–689

    Article  CAS  PubMed  Google Scholar 

  • Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM, Liu B, Han ZB, et al. 2005 Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant. 14 311–321

    Article  PubMed  Google Scholar 

  • Fu L, Zhu L, Huang Y, Lee TD, Forman SJ and Shih CC 2008 Derivation of neural stem cells from mesenchymal stem cells: Evidence for a Bipotential Stem Cell Population. Stem Cells Dev. 17 1109–1121

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gopurappilly R, Pal R, Mamidi MK, Dey S, Bhonde R and Das AK 2011 Stem cells in stroke repair: current success & future prospects. CNS Neurol. Disord. Drug Targets 10 741–756

    Google Scholar 

  • Gronli J, Bramham C, Murison R, Kanhema T, Fiske E, Bjorvatn B, Ursin R and Portas CM 2006 Chronic mild stress inhibits BDNF protein expression and CREB activation in the dentate gyrus but not in the hippocampus proper. Pharmacol. Biochem. Behav. 85 842–849

    Article  CAS  PubMed  Google Scholar 

  • Habisch HJ, Schmid B, Arnim CA, Ludolph AC, Brenner R and Storch A 2010 Efficient processing of Alzheimer’s Disease amyloid-beta peptides by neuroectodermally converted mesenchymal stem cells. Stem Cells Dev. 19 629–633

    Article  CAS  PubMed  Google Scholar 

  • Han YG, Spassky N, Romaguera-Ros M, Garcia-Verdugo JM, Aguilar A, Schneider- Maunoury S and Alvarez-Buylla A 2008 Hedgehog signalling and primary cilia are required for the formation of adult neural stem cells. Nat. Neurosci. 11 277–284

    Article  CAS  PubMed  Google Scholar 

  • Harmening K, Heile A, Miller M, Johanson CE, Wallrapp C, Brinker T, Silverberg GD and Klinge PM 2009 Microglial downregulation in a double transgenic mouse model associated with early-onset Alzheimer’s disease (AD) after intraventricular implantation of alginate encapsulated glucagon-like-peptise-1 (GLP-1) producing human mesenchymal stem cells. Cerebrospinal Fluid Res. 6 S15

    Article  PubMed Central  Google Scholar 

  • Hedvika D, Xiufang G, Stephen L, Maria S and James JH 2011 Small molecule induction of human umbilical stem cells into myelin basic protein positive oligodendrocytes in a defined three-dimensional environment. ACS Chem. Neurosci. 3 31–39

    Google Scholar 

  • Honmou O, Houkin K, Matsunaga T, Niitsu Y, Ishiai S, Onodera R, Waxman SG and Kocsis JD 2011 Intravenous administration of auto serum-expanded autologous mesenchymal stem cells in stroke. Brain 134 1790–1807

    Article  PubMed Central  PubMed  Google Scholar 

  • Huang AH, Snyder BR, Cheng PH and Chan AW 2008 Putative dental pulp-derived stem/stromal cellspromote proliferation and differentiation of endogenous neural cells in the hippocampus of mice. Stem Cells 26 2654–2663

    Article  CAS  PubMed  Google Scholar 

  • Husum H, Aznar S, Høyer-Hansen S, Larsen MH, Mikkelsen JD, Moller A, Mathe AA and Wörtwein G 2006 Exacerbated loss of cell survival, neuropeptide Y-immunoreactive (IR) cells, and serotonin-IR fiber lengths in the dorsal hippocampus of the aged flinders sensitive line "depressed" rat: Implications for the pathophysiology of depression? J. Neurosci. Res. 84 1292–1302

    Article  CAS  PubMed  Google Scholar 

  • Ikegame Y, Yamashita K, Hayashi S, Mizuno H, Tawada M, You F, Yamada K, Tanaka, et al. 2011 Comparison of mesenchymal stem cells from adipose tissue and bone marrow for ischemic stroke therapy. Cytotherapy 13 675–685

    Article  CAS  PubMed  Google Scholar 

  • Jansen BJ, Gilissen C, Roelofs H, Schaap-Oziemlak A, Veltman JA, Raymakers RS, Jansen JH, Kogler, et al. 2010 Functional differences between mesenchymal stem cell populations are reflected by their transcriptome. Stem Cells Dev. 19 481–490

    Article  CAS  PubMed  Google Scholar 

  • Jiang TM, Yang ZJ, Kong CZ, Zhang HT 2010 Schwann-like cells can be induction from human nestin-positive amniotic fluid mesenchymal stem cells. In Vitro Cell Dev. Biol. Anim. 46 793–800

    Google Scholar 

  • Jiao F, Wang J, Dong ZL, Wu MJ, Zhao TB, Li DD and Wang X 2012 Human mesenchymal stem cells derived from limb bud can differentiate into all three embryonic germ layers lineages. Cell Reprogram 14 324–333

    Google Scholar 

  • Kadar K, Kiraly M, Porcsalmy B, Molnar B, Racz GZ, Blazsek J, Kallo K, Szabo EL et al. 2009 Differentiation potential of stem cells from human dental origin - promise for tissue engineering. J. Physiol. Pharmacol. 60 167–75

    Google Scholar 

  • Kaka GR, Titaihi T, Delshad A, Arabkheradmand J and Kazemi H 2012 In vitro induction of bone marrow stromal cells into oligodendrocyte-like cells using triiodothryonine as inducer. Int J Neurosci. 122 237–247

    Google Scholar 

  • Karussis D, Karageorgiou C, Vaknin-Dembinsky A, Gowda-Kurkalli B, Gomori JM, Kassis I, Bulte JW, Petrou P et al.2010 Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67 1187–1194

    Google Scholar 

  • Kim SS, Choi JM, Kim JW, Ham DS, Ghil SH, Kim MK, Kim-Kwon Y, Hong et al. 2005 cAMP induces neuronal differentiation of mesenchymal stem cells via activation of extra-cellularsignal-regulated kinase/MAPK. Neuroreport 16 1357–1361

  • Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Esparza Gonzalez BP and Nino-Fong R 2012 Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. Am. J. Vet. Res. 73 1305–1317

    Google Scholar 

  • Kita K, Gauglitz GG, Phan TT, Herndon DN and Jeschke MG 2010 Isolation and characterization of mesenchymal stem cells from the sub-amniotic human umbilical cord lining membrane. Stem Cells Dev. 19 491–502

  • Koh SH, Noh MY, Cho GW, Kim KS and Kim SH 2009 Erythropoietin increases the motility of human bone marrow – multipotent stromal cells (hBM-MSCs) and enhances the production of neurotrophic factors from hBM-MSCs. Stem Cells Dev. 18 411–421

    Google Scholar 

  • Lee PH, Kim JW, Bang OY, Ahn YH, Joo IS, Huh K. 2008 Autologous mesenchymal stem cell therapy delays the progression of neurological deficits in patients with multiple system atrophy. Clin. Pharmacol. Ther. 83 723–730

    Google Scholar 

  • Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE and Bae JS 2010 Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s Disease mice by modulation of immune responses. Stem Cells 28 329–343

    Google Scholar 

  • Levy YS, Bahat-Stroomza M, Barzilay R, Burshtein A, Bulvik S, Barhum Y, Panet H, Melamed E and Offen D 2008 Regenerative effect of neural-induced human mesenchymal stromal cells in rat models of parkinson’s disease. Cytotherapy 10 340–352

    Google Scholar 

  • Lim JH, Boozer L, Mariani CL, Piedrahita JA and Olby NJ 2010 Generation and characterization of neurospheres from canine adipose tissue-derived stromal cells. Cell Reprogram. 12 417–425

    Google Scholar 

  • Low CB, Liyou YC and Tang BL 2008 Neural differentiation and potential use of stem cells from the human umbilical cord for central nervous system transplantation therapy. J Neurosci Res 86 1670–1679

    Google Scholar 

  • Lu P, Blesch A and Tuszynski MH 2004 Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation or artefact? J Neurosci Res 77 174–191

    Google Scholar 

  • Lyahyai J, Mediano DR, Ranera B, Sanz A,Remacha AR, Bolea R, Zaragoza P, Rodellar et al. 2012 Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet. Res. 8 169

  • Ma L, Feng XY, Cui BL, Law F, Jiang XW, Yang LY, Xie QD, Huang TH 2005 Human umbilical cord Wharton's Jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin. Med. J. (Engl). 118 1987–1993

    Google Scholar 

  • Mamidi MK, Pal R, Mori NA, Arumugam G, Thrichelvam ST, Noor PJ, Abdullah HM, Gupta PK et al. 2011 Co-culture of mesenchymal-like stromal cells derived from human foreskin permits long term propagation and differentiation of human embryonic stem cells. J. Cell Biochem. 112 1353–1363

    Google Scholar 

  • Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NA, Fakharuzi NA, Zakaria Z, Bhonde et al. 2012 Comparative cellular and molecular analyses of pooled bone marrow multipotentmesenchymal stromal cells during continuous passaging and after successive cryopreservation. J. Cell Biochem. 113 3153–3164

  • Mamidi MK, Pal R, Dey S, Bin Abdullah BJ, Zakaria Z, Rao MS, Das AK. 2012 Cell therapy in critical limb ischemia: current developments and future progress. Cytotherapy 14 902–916

    Google Scholar 

  • Mantovani C, Mahay D, Kingham M, Terenghi G, Shawcross SG, Wiberg M. 2010 Bone marrow- and adipose-derived stem cells show expression of myelin mRNAs and proteins. Regen. Med. 5 403–410

    Google Scholar 

  • Mareschi K, Rustichelli D, Comunanza V, De Fazio R, Cravero C, Morterra G, Martinoglio B, Medico et al. 2009 Multipotentmesenchymal stem cells from amniotic fluid originate neural precursors with functional voltage-gated sodium channels. Cytotherapy 11 534–547

  • Maria D, Hiroshi K, Mikio H, Hirotomi C, Naoya M, Yutaka I, Nobuyoshi T, Hitoshi et al. 2004 Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest. 113 1701–1710

  • Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch et al. 2003 Matrix cells from wharton’s jelly form neurons and glia. Stem Cells 21 50–60

  • Monaco E, Bionaz M, Rodriguez-Zas S, Hurley WL, Wheeler MB 2012 Transcriptomics comparison between porcine adipose and bone marrow mesenchymal stem cells during in vitro osteogenic and adipogenic differentiation. PLoS ONE 7 e32481

  • Morito T, Muneta T, Hara K, Ju YJ, Mochizuki T, Makino H, Umezawa A, Sekiya I 2008 Synovial fluid-derived mesenchymal stem cells increase after intra-articular ligament injury in humans. Rheumat. (Oxford) 47 1137–1144

    Google Scholar 

  • Musina RA, Bekchanova ES, Belyavskii AV and Sukhikh GT 2006 Differentiation potential of mesenchymal stem cells of different origin. Bull. Exp. Biol. Med. 141 147–151

    Google Scholar 

  • Naghdi M, Tiraihi T, Namin SA and Arabkheradmand J 2009 Transdifferentiation of bone marrow stromal cells into cholinergic neuronal phenotype: a potential source for cell therapy in spinal cord injury. Cytotherapy 11 137–152

    Google Scholar 

  • Nanette J, Geralyn A, Louisa W, Scott O, Gerhard B and Jan AN 2010 Mesenchymal stem cells for the treatment of neurodegenerative diseases. Regen Med. 5 933–946

  • Otero L, Zurita M, Bonilla C, Aquayo C, Vela A, Rico MA and Vaqyero J 2011 Late transplantation of allogenic bone marrow stromal cells improves neurologic deficits subsequent to intracerebralhemorrhage. Cytotherapy 13 562–571

    Google Scholar 

  • Pavlova G, Lopatina T, Kalinina N, Rybalkina E, Parfyonova Y, Tkachuk V, Revishchin A. 2012 In Vitro Neuronal Induction of Adipose-Derived Stem Cells and their Fate after Transplantation into Injured Mouse Brain. Curr. Med. Chem. 19 5170–5177

    Google Scholar 

  • Pereira MC, Secco M, Suzuki DE, Janjoppi L, Rodini CO, Torres LB, Araujo BH, Cavalheiro et al. 2011 Contamination of mesenchymal stem cells with fibroblasts accelerates neurodegeneration in an experimental model of Parkinson’s Disease. Stem Cell Rev. and Rep. 7 1006–1017

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR 1999 Multilineage potential of adult human mesenchymal stem cells. Science 284 143–147

    Google Scholar 

  • Philippe T, Nadine P, Jean-Claude P, Daniele N, Mireille A, Alim-Louis B and Francois B 2006 Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells – Philippe Tropel. Stem Cells 24 2868–2876

    Article  Google Scholar 

  • Raynaud CM, Maleki M, Lis R, Ahmed B, Al-Azwani I, Malek J, Safadi FF and Rafii A 2012 Comprehensive characterization of mesenchymal stem cells from human placenta and fetal membrane and their response to osteoactivin stimulation. Stem Cells Int. 2012 658356

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rooney GE, Howard L, O’Brien T, Windebank AJ and Barry FP 2009 Elevation of cAMP in mesenchymal stem cells transiently upregulates neural markers rather than inducing neural differentiation. Stem Cells Dev. 18 387–398

    Google Scholar 

  • Rotter N, Oder J, Schlenke P, Lindner U, Böhrnsen F, Kramer J, Rohwedel J, Huss R et al. 2008 solation and characterization of adult stem cells from human salivary glands. Stem Cells Dev. 17 509–518

  • Roubelakis MG, Trohatou O, and Anagnou NP 2012 Amniotic Fluid and Amniotic Membrane Stem Cells: Marker Discovery. Stem Cells Int. 107836 1–9

    Article  Google Scholar 

  • Rubinsztein DC 2006 The roles of intracellular protein-degradation pathways in neurodegeneration. Nature 443 780–786

    Article  CAS  PubMed  Google Scholar 

  • Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM and Rice HE 2002 Neurogenic differentiation of murine and human adipose – derived stromal cells. Biochem. Biophys. Res. Commun. 294 371–379

    Google Scholar 

  • Salgado AJ, Fraga JS, Mesquita AR, Neves NM, Reis RL and Sousa N 2010 Role of umbilical cord mesenchymal progenitors conditioned media in neuronal/glial cell densities, viability and proliferation. Stem Cells Dev. 19 1067–1074

  • Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, Ogiuchi H 2008 Neurosphere generation from dental pulp of adult rat incisor. Eur. J. Neurosci. 27 538–548

    Google Scholar 

  • Schaffler A and Buchler C 2007 Concise Review: Adipose tissue-derived stromal cells – basic and clinical implications for novel cell-based therapies. Stem Cells 25 818–827

    Google Scholar 

  • Schuring AN, Schulte N, Kelsch R, Ropke A, Kiesel L, Gotte M 2011 Characterization of endometrial mesenchymalstem-like cells obtained by endometrial biopsy during routine diagnostics. Fertil Steril. 95 423–426

    Google Scholar 

  • Shing-Jyh C, Shun-Long W, Jui-Yu H, Tao-Yeuan W, Margaret DTC and Hsei-Wei W 2011 MicroRNA – 34a modulates genes involved in cellular motility and oxidative phosphorylation in neural precursors derived from human umbilical cord mesenchymal stem cells. BMC Medical Genomics 4 65

    Article  Google Scholar 

  • Sims NR and Muyderman H 2010 Mitochondria, oxidative metabolism and cell death in stroke. Biochim. Biophys. Acta. 1802 80–91

    Google Scholar 

  • Sujeong J, Hyong-Ho C, Yong-Bum C, Jong-Seong P and Han-Seong J 2010 Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biology 11 25

    Article  Google Scholar 

  • Tfilin M, Sudai E, Merenlender A, Gispan I, Yadid G, Turgeman G 2010 Mesenchymal stem cells increase hippocampal neurogenesis and counteract depressive-like behavior. Mol. Psychiatry 15 1164–1175

    Google Scholar 

  • Thompson LM 2008 Neurodegeneration: a question of balance. Nature 452 707–708

    Google Scholar 

  • Tirino V, Paino F, De Rosa A and Papaccio G 2012 Identification, isolation, characterization, and banking of human dental pulp stem cells. Methods Mol Biol. 879 443–463

    Google Scholar 

  • Trazaska KA, Reddy BY, Munoz JL, Li KY, Ye JH and Rameshwar P 2008 Loss of RE-1 silencing factor in mesenchymal stem cell derived dopamine progenitors induces functional maturity. Mol Cell Neurosci. 39 285–290

    Google Scholar 

  • Venkataramana NK, Kumar SK, Balaraju S, Radhakrishnan RC, Bansal A, Dixit A, Rao DK, Das M et al.2010 Open-labeled study of unilateral autologous bone-marrow-derived mesenchymal stem cell transplantation in Parkinson's disease. Transl Res. 150 62–70

    Google Scholar 

  • Vishnubalaji R, Al-Nbaheen M, Kadalmani B, Aldahmash A and Ramesh T 2012 Skin-derived multipotent stromal cells - an archrival for mesenchymal stem cells. Cell Tissue Res. 350 1–12

    Google Scholar 

  • Wand J, Wang X, Sun Z, Wang X, Yang H, Shi S and Wang S 2010 Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 19 1375–1383

    Google Scholar 

  • Wang F, Yasuhara T, Shingo T, Kameda M, Tajiri N, Yuan WJ, Kondo A, Kadota et al. 2010 Intravenous administration of mesenchymal stem cells exerts therapeutic effects on parkinsonian model of rats: Focusing on neuroprotective effects of stromal cell-derived factor-1α. BMC Neurosci. 11 52

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wexler EM, Paucer A, Kornblum HI, Palmer TD and Geschwind DH 2009 Endogenous wnt signalling maintains neural progenitor cell potency. Stem Cells 27 1130–1141

    Google Scholar 

  • Witkowska-Zimny M and Wrobel E 2011 Perinatal sources of mesenchymal stem cells: Wharton's jelly, amnion and chorion. Cell Mol. Biol. Lett. 16 493–514

    Google Scholar 

  • Wu CH, Lee FK, Suresh Kumar S, Ling QD, Chang Y, Chang Y, Wang HC, Chen H, et al. 2012 The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials 33 8228–8239

    Google Scholar 

  • Yang Y, Li Y, Lv Y, Zhang S, Chen L, Bai C, Nan X, Yue, et al. 2008 NRSF silencing induces neuronal differentiation of human mesenchymal stem cells. Exp. Cell Res. 314 2257–2265

    Article  CAS  PubMed  Google Scholar 

  • Ying C, Hu W, Cheng B, Zheng X and Li S 2012 Neural differentiation of rat adipose-derived stem cells in vitro. Cell Mol. Neurobiol. 32 1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Yust-Katz S, Fisher-Shoval Y, Barhum Y, Ben-Zur T, Barzilay R, Lev N, Hod M, Melamed, et al. 2012 Placental mesenchymal stromal cells induced into neurotrophic- producing cells protect neuronal cells from hypoxia and oxidative stress. Cytotherapy 14 45–55

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZX, Guan LX, Zhang K, Zhang Q and Dai LJ 2008 A combined procedure to deliver autologous mesenchymal stromal cells to patients with traumatic brain injury. Cytotherapy 10 134–139

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Tan X, Dong C, Zou L, Zhao H, Zhang X, Tian M and Jin G 2012 In vitro differentiation of human umbilical cord mesenchymal stem cells (hUCMSCs), derived from Wharton's jelly, into choline acetyltransferase (ChAT)-positive cells. Int. J. Dev. Neurosci. 30 471–477

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Stempeutics Research, Malaysia, and Manipal Institute of Regenerative Medicine, India, for enabling us to carry out research on stem cells and regenerative medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Kumar Das.

Additional information

Corresponding editor: SATISH KUMAR

[Taran R, Mamidi MK, Singh G, Dutta S, Parhar IS, John JP, Bhonde R, Pal R and Das AK 2014 In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J. Biosci. 39 1–13] DOI 10.1007/s12038-013-9409-5

Ramyani Taran and Murali Mamidi contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taran, R., Mamidi, M.K., Singh, G. et al. In vitro and in vivo neurogenic potential of mesenchymal stem cells isolated from different sources. J Biosci 39, 157–169 (2014). https://doi.org/10.1007/s12038-013-9409-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9409-5

Keywords

Navigation