Skip to main content
Log in

Functional analyses of a flavonol synthase–like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The flavonoids metabolic pathway plays central roles in floral coloration, in which anthocyanins and flavonols are derived from common precursors, dihydroflavonols. Flavonol synthase (FLS) catalyses dihydroflavonols into flavonols, which presents a key branch of anthocyanins biosynthesis. The yellow flower of Camellia nitidissima Chi. is a unique feature within the genus Camellia, which makes it a precious resource for breeding yellow camellia varieties. In this work, we characterized the secondary metabolites of pigments during floral development of C. nitidissima and revealed that accumulation of flavonols correlates with floral coloration. We first isolated CnFLS1 and showed that it is a FLS of C. nitidissima by gene family analysis. Second, expression analysis during floral development and different floral organs indicated that the expression level of CnFLS1 was regulated by developmental cues, which was in agreement with the accumulating pattern of flavonols. Furthermore, over-expression of CnFLS1 in Nicotiana tabacum altered floral colour into white or light yellow, and metabolic analysis showed significant increasing of flavonols and reducing of anthocyanins in transgenic plants. Our work suggested CnFLS1 plays critical roles in yellow colour pigmentation and is potentially a key point of genetic engineering toward colour modification in Camellia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

Cy3R:

cyanidin-3-O-rutinoside

FLS:

flavonol synthase

Qu:

quercetin

Qu3G:

quercetin-3-O-β-d-glucoside

Qu7G:

quercetin-7-O-β-d-glucoside

References

  • Aharoni A, De Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JN and O'Connell AP 2001 The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J. 28 319–332

    Article  PubMed  CAS  Google Scholar 

  • Aida R, Yoshida K, Kondo T, Kishimoto S and Shibata M 2000 Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene. Plant Sci. 160 49–56

    Article  PubMed  CAS  Google Scholar 

  • Buer CS, Imin N and Djordjevic MA 2010 Flavonoids: new roles for old molecules. J. Integr. Plant Biol. 52 98–111

    Article  PubMed  CAS  Google Scholar 

  • Chang H and Ren S 1998 Theaceae. Flora reipublicae popularis sinicae (Beijing: Science Press) pp 87–133

    Google Scholar 

  • Elomaa P, Honkanen J, Puska R, Seppanen P, Helariutta Y, Mehto M, Kotilainen M, Nevalainen L, et al. 1993 Agrobacterium-mediated transfer of antisense chalcone synthase Cdna to gerbera-hybrida inhibits flower pigmentation. Bio-Technology 11 508–511

    Article  CAS  Google Scholar 

  • Fukui Y, Tanaka Y, Kusumi T, Iwashita T and Nomoto K 2003 A rationale for the shift in colour towards blue in transgenic carnation flowers expressing the flavonoid 3',5'-hydroxylase gene. Phytochemistry 63 15–23

    Article  PubMed  CAS  Google Scholar 

  • Fukusaki E, Kawasaki K, Kajiyama S, An CI, Suzuki K, Tanaka Y and Kobayashi A 2004 Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotechnol. 111 229–240

    Article  PubMed  CAS  Google Scholar 

  • Gao J 2005 Collected species of the genus Camellia - An illustrated outline (Hangzhou: Zhejiang Science and Technology Publishing House)

    Google Scholar 

  • Gou JY, Felippes FF, Liu CJ, Weigel D and Wang JW 2011 Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell 23 1512–1522

    Article  PubMed  CAS  Google Scholar 

  • Grotewold E 2006 The genetics and biochemistry of floral pigments. Annu. Rev. Plant Biol. 57 761–780

    Article  PubMed  CAS  Google Scholar 

  • Harris NN, Javellana J, Davies KM, Lewis DH, Jameson PE, Deroles SC, Calcott KE, Gould KS, et al. 2012 Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA. BMC Plant Biol. 12 34

    Article  PubMed  CAS  Google Scholar 

  • Holton TA, Brugliera F and Tanaka Y 1993 Cloning and expression of flavonol synthase from Petunia hybrida. Plant J. 4 1003–1010

    Article  PubMed  CAS  Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG and Fraley RT 1985 A simple and general-method for transferring genes into plants. Science 227 1229–1231

    Article  CAS  Google Scholar 

  • Katsumoto Y, Fukuchi-Mizutani M, Fukui Y, Brugliera F, Holton TA, Karan M, Nakamura N, Yonekura-Sakakibara K, et al. 2007 Engineering of the rose flavonoid biosynthetic pathway successfully generated blue-hued flowers accumulating delphinidin. Plant Cell Physiol. 48 1589–1600

    Article  PubMed  CAS  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul JM, Baudry A, Pourcel L, Nesi N and Caboche M 2006 Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. 57 405–430

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Hashimoto F, Shimizu K and Sakata Y 2007 Anthocyanins from red flowers of Camellia reticulata LINDL. Biosci. Biotechnol. Biochem. 71 2833–2836

    Article  PubMed  CAS  Google Scholar 

  • Li JB, Hashimoto F, Shimizu K and Sakata Y 2008 Anthocyanins from red flowers of Camellia cultivar 'Dalicha'. Phytochemistry 69 3166–3171

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ and Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25 402–408

    Article  PubMed  CAS  Google Scholar 

  • Mahajan M, Ahuja PS and Yadav SK 2011 Post-transcriptional silencing of flavonol synthase mRNA in tobacco leads to fruits with arrested seed set. PLoS One 6 e28315

    Article  PubMed  CAS  Google Scholar 

  • Mahajan M, Joshi R, Gulati A and Yadav SK 2012 Increase in flavan-3-ols by silencing flavonol synthase mRNA affects the transcript expression and activity levels of antioxidant enzymes in tobacco. Plant Biol. 14 725–733

    Article  CAS  Google Scholar 

  • Marchler-Bauer A, Lu SN, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, et al. 2011 CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39 D225–D229

    Article  PubMed  CAS  Google Scholar 

  • Markham KR and Hammett KRW 1994 The basis of yellow coloration in Lathyrus-Aphaca flowers. Phytochemistry 37 163–165

    Article  CAS  Google Scholar 

  • Miyajima I, Uemoto S, Sakata Y, Arisumi KI and Toki K 1985 Yellow pigment of Camellia chrysantha flowers. J. Faculty Agric. Kyushu Univ. 29 257–266

    CAS  Google Scholar 

  • Nakatsuka T, Abe Y, Kakizaki Y, Yamamura S and Nishihara M 2007 Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep. 26 1951–1959

    Article  PubMed  CAS  Google Scholar 

  • Nielsen K, Deroles SC, Markham KR, Bradley MJ, Podivinsky E and Manson D 2002 Antisense flavonol synthase alters copigmentation and flower color in lisianthus. Mol. Breed. 9 217–229

    Article  CAS  Google Scholar 

  • Nielsen KM and Bloor SJ 1997 Analysis and developmental profile of carotenoid pigments in petals of three yellow petunia cultivars. Sci. Hortic. Amsterdam 71 257–266

    Article  CAS  Google Scholar 

  • Nishihara M and Nakatsuka T 2010 Genetic engineering of novel flower colors in floricultural plants: Recent advances via transgenic approaches; in Protocols for in vitro propagation of ornamental plants (eds) SM Jain and SJ Ochatt (Humana Press)

  • Owens DK, Alerding AB, Crosby KC, Bandara AB, Westwood JH and Winkel BS 2008 Functional analysis of a predicted flavonol synthase gene family in Arabidopsis. Plant Physiol. 147 1046–1061

    Article  PubMed  CAS  Google Scholar 

  • Park CR 2000 Breeding progress with yellow camellia (American Camellia Yearbook)

  • Peer WA and Murphy AS 2007 Flavonoids and auxin transport: modulators or regulators? Trends Plant Sci. 12 556–563

    Article  PubMed  CAS  Google Scholar 

  • Pollak PE, Vogt T, Mo Y and Taylor LP 1993 Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida. Plant Physiol. 102 925–932

    PubMed  CAS  Google Scholar 

  • Preuss A, Stracke R, Weisshaar B, Hillebrecht A, Matern U and Martens S 2009 Arabidopsis thaliana expresses a second functional flavonol synthase. FEBS Lett. 583 1981–1986

    Article  PubMed  CAS  Google Scholar 

  • Proost S, Van Bel M, Sterck L, Billiau K, Van Parys T, Van de Peer Y and Vandepoele K 2009 PLAZA: a comparative genomics resource to study gene and genome evolution in plants. Plant Cell 21 3718–3731

    Article  PubMed  CAS  Google Scholar 

  • Scogin R 1986 Floral pigments of the yellow Camellia, Camellia chrysantha (Theaceae). Aliso 11 387–392

    Google Scholar 

  • Shinichi N, Fumio H, Keiichi S and Yusuke S 2004 Petal coloration of interspecific hybrids between Camellia chrysantha X C. japonica. JJSHS 73 189–191

    Article  Google Scholar 

  • Stracke R, Ishihara H, Barsch GHA, Mehrtens F, Niehaus K and Weisshaar B 2007 Differential regulation of closely related R2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50 660–677

    Article  PubMed  CAS  Google Scholar 

  • Stracke R, Jahns O, Keck M, Tohge T, Niehaus K, Fernie AR and Weisshaar B 2010 Analysis of production of flavonol glycosides-dependent flavonol glycoside accumulation in Arabidopsis thaliana plants reveals MYB11-, MYB12-and MYB111-independent flavonol glycoside accumulation. New Phytol. 188 985–1000

    Article  PubMed  CAS  Google Scholar 

  • Subramanian S, Stacey G and Yu O 2007 Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci. 12 282–285

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Li H, Wang L and Dai S 2011 Rapid, effective method for anthocyanin analysis in tobacco corolla. Chin. Bull. Bot. 46 189–196

    Article  CAS  Google Scholar 

  • Takahashi R, Githiri SM, Hatayama K, Dubouzet EG, Shimada N, Aoki T, Ayabe S, Iwashina T, et al. 2007 A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Mol. Biol. 63 125–135

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S 2011 MEGA5 molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28 2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Sasaki N and Ohmiya A 2008 Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J. 54 733–749

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP and Grotewold E 2005 Flavonoids as developmental regulators. Curr. Opin. Plant Biol. 8 317–323

    Article  PubMed  CAS  Google Scholar 

  • Terahara N, Takeda Y, Nesumi A and Honda T 2001 Anthocyanins from red flower tea (Benibana-cha), Camellia sinensis. Phytochemistry 56 359–361

    Article  PubMed  CAS  Google Scholar 

  • Treutter D 2005 Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol. 7 581–591

    Article  PubMed  CAS  Google Scholar 

  • Tsuda S, Suzuki K, Xue H, Tanaka Y, Fukui Y, Fukuchi-Mizutani M, Katsumoto Y and Kusumi T 1999 Molecular breeding of flower color of Torenia hybrida. Curr. Plant Sci. Biot. 36 613–616

    Article  Google Scholar 

  • Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y and Vandepoele K 2012 Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158 590–600

    Article  PubMed  Google Scholar 

  • Vanderkrol AR, Lenting PE, Veenstra J, Vandermeer IM, Koes RE, Gerats AGM, Mol JNM and Stuitje AR 1988 An anti-sense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333 866–869

    Article  CAS  Google Scholar 

  • Winkel-Shirley B 2001 Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126 485–493

    Article  PubMed  CAS  Google Scholar 

  • Winkel BS 2004 Metabolic channeling in plants. Annu. Rev. Plant Biol. 55 85–107

    Article  PubMed  CAS  Google Scholar 

  • Zhai J, Liu J, Liu B, Li P, Meyers BC, et al. 2008 Small RNA-directed epigenetic natural variation in Arabidopsis thaliana. PLoS Genet. 4 e1000056

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the funds from Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (NO.2012BAD01B0703). We also acknowledge International Science & Technology Cooperation Program of China (2011DFA30490), Breeding New Flower Varieties Program of Zhejiang Province (2012C12909-6), the CAF Nonprofit Research Projects (RISF6141), and National Science Foundation of Guangxi Region (2012GXNSFBA053077). We greatly appreciate the two anonymous reviewers for their critical reading and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji-Yuan Li or Heng-Fu Yin.

Additional information

Corresponding editor: UTPAL NATH

[Zhou X-W, Fan Z-Q, Chen Y, Zhu Y-L, Li J-Y and Yin H-F 2013 Functional analyses of a flavonol synthase–like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. J. Biosci. 38 1–12] DOI 10.1007/s12038-013-9339-2

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/sep2013/supp/Zhou.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(PDF 82.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, XW., Fan, ZQ., Chen, Y. et al. Functional analyses of a flavonol synthase–like gene from Camellia nitidissima reveal its roles in flavonoid metabolism during floral pigmentation. J Biosci 38, 593–604 (2013). https://doi.org/10.1007/s12038-013-9339-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9339-2

Keywords

Navigation