Skip to main content
Log in

Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The interferon (IFN)-inducible, 2′,5′-oligoadenylate (2-5A)-dependent ribonuclease L (RNase L) plays key role in antiviral defense of mammalian cells. Induction by IFN and activation by double-stranded RNA lead to 2-5A cofactor synthesis, which activates RNase L by causing its dimerization. Active RNase L degrades single-stranded viral as well as cellular RNAs causing apoptosis of virus-infected cells. Earlier, we had reported that expression of recombinant human RNase L caused RNA-degradation and cell-growth inhibition in E. coli without the need for exogenous 2-5A. Expression of human RNase L in E. coli usually leads to problems of leaky expression, low yield and degradation of the recombinant protein, which demands number of chromatographic steps for its subsequent purification thereby, compromising its biochemical activity. Here, we report a convenient protocol for expression of full-length, soluble and biochemically active recombinant human RNase L as GST-RNase L fusion protein from E. coli utilizing a single-step affinity purification with an appreciable yield of the highly purified protein. Recombinant RNase L was characterized by SDS-PAGE, immunoblotting and MALDI-TOF analysis. A semi-quantitative agarose-gel-based ribonuclease assay was developed for measuring its 2-5A-dependent RNase L activity against cellular large rRNAs as substrates. The optimized expression conditions minimized degradation of the protein, making it a convenient method for purification of RNase L, which can be utilized to study effects of various agents on the RNase L activity and its protein–protein interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Al-Ahmadi W, Al-Haj L, Al-Mohanna FA, Silverman RH and Khabar KSA 2009 RNase L downmodulation of the RNA-binding protein, HuR, and cellular growth. Oncogene 28 1782–1791

    Article  PubMed  CAS  Google Scholar 

  • Anderson BR, Muramatsu H, Jha BK, Silverman RH, Weissman D and Karikó K 2011 Nucleoside modifications in RNA limit activation of 2'-5'-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res. 39 9329–9338

  • Auffray C and Rougeon F 1980 Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur. J. Biochem. 107 303–314

    Article  PubMed  CAS  Google Scholar 

  • Bisbal C and Salehzada T 2008 RNase L, a crucial mediator of innate immunity and other cell functions [original article in French]. Med. Sci. (Paris) 24 859–864

    Article  Google Scholar 

  • Bisbal C and Silverman RH 2007 Diverse functions of RNase L and implications in pathology. Biochimie 89 789–798

    Article  PubMed  CAS  Google Scholar 

  • Castelli JC, Hassel BA, Wood KA, Li XL, Amemiya K, Dalakas MC, Torrence PF and Youle RJ 1997 A study of the interferon antiviral mechanism: Apoptosis activation by the 2-5A system. J. Exp. Med. 186 967–972

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarti A, Jha BK and Silverman RH 2011 New insights into the role of RNase L in innate immunity. J. Interferon Cytokine Res. 31 49–57

    Article  PubMed  CAS  Google Scholar 

  • Díaz Guerra M, Esteban M and Martínez JL 1997 Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2′,5′-linked oligoadenylate-dependent human RNase L enzyme. FEMS Microbiol. Lett. 149 107–113

    Article  PubMed  Google Scholar 

  • Dong B and Silverman RH 1995 2-5A-dependent RNase molecules dimerize during activation by 2-5A. J. Biol. Chem. 270 4133–4137

    Article  PubMed  CAS  Google Scholar 

  • Dong B and Silverman RH 1997 A bipartite model of 2-5A-dependent RNase L. J. Biol. Chem. 272 22236–22242

    Article  PubMed  CAS  Google Scholar 

  • Dong B and Silverman RH 1999 Alternative function of a protein kinase homology domain in 2′,5′-oligoadenylate dependent RNase L. Nucleic Acids Res. 27 439–445

    Article  PubMed  CAS  Google Scholar 

  • Dong B, Xu L, Zhou A, Hassel BA, Lee X, Torrence PF and Silverman RH 1994 Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J. Biol. Chem. 269 14153–14158

    PubMed  CAS  Google Scholar 

  • Dong B, Niwa M, Walter P and Silverman RH 2001 Basis for regulated RNA cleavage by functional analysis of RNase L and Ire1p. RNA 7 361–373

    Article  PubMed  CAS  Google Scholar 

  • Frémont M, El Bakkouri K, Vaeyens F, Herst CV, De Meirleir K and Englebienne P 2005 2′,5′-oligoadenylate size is critical to protect RNase L against proteolytic cleavage in chronic fatigue syndrome. Exp. Mol. Pathol. 78 239–246

    Article  PubMed  Google Scholar 

  • Hassel BA, Zhou A, Sotomayor C, Maran A and Silverman RH 1993 A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 12 3297–3304

    PubMed  CAS  Google Scholar 

  • Hovanessian AG and Justesen J 2007 The human 2′-5′oligoadenylate synthetase family: Unique interferon-inducible enzymes catalyzing 2′-5′ instead of 3′-5′ phosphodiester bond formation. Biochimie 89 779–788

    Article  PubMed  CAS  Google Scholar 

  • Jha BK, Polyakova I, Kessler P, Dong B, Dickerman B, Sen GC and Silverman RH 2011 Inhibition of RNase L and RNA-dependent protein kinase (PKR) by sunitinib impairs antiviral innate immunity. J. Biol. Chem. 286 26319–26326

    Article  PubMed  CAS  Google Scholar 

  • Kristiansen H, Gad HH, Eskildsen-Larsen S, Despres P, Hartmann R 2011 The oligoadenylate synthetase family: an ancient protein family with multiple antiviral activities. J. Interferon Cytokine Res. 31 41–47

    Article  PubMed  CAS  Google Scholar 

  • Le Roy F, Salehzada T, Bisbal C, Doughearty JP and Peltz SW 2005 A newly discovered function for RNase L in regulating translation termination. Nat. Struct. Mol. Biol. 12 505–512

    Article  PubMed  Google Scholar 

  • Le Roy F, Silhol M, Salehzada T and Bisbal C 2007 Regulation of mitochondrial mRNA stability by RNase L is translation-dependent and controls IFN-alpha induced apoptosis. Cell Death Differ. 14 1406–1413

    Article  PubMed  Google Scholar 

  • Li G, Xiang Y, Sabapathy K and Silverman RH 2004 An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J. Biol. Chem. 279 1123–1131

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Andersen JB, Ezelle HJ, Wilson GM and Hassel BA 2007 Post-transcriptional regulation of RNase-L expression is mediated by the 3′-untranslated region of its mRNA. J. Biol. Chem. 282 7950–7960

    Article  PubMed  CAS  Google Scholar 

  • Li XL, Ezelle HJ, Kang TJ, Zhang L, Shirey KA, Harro J, Hasday JD, Mohapatra SK, et al. 2008 An essential role for the antiviral endoribonuclease, RNase L, in antibacterial immunity. Proc. Natl. Acad. Sci. USA 105 20816–20821

    Article  PubMed  CAS  Google Scholar 

  • Liang SL, Quirk D and Zhou A 2006 RNase L: Its biological roles and regulation. IUBMB Life 58 508–514

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Liang SL, Liu H, Silverman R and Zhou A 2007 Tumour suppressor function of RNase L in a mouse model. Eur. J. Cancer 43 202–209

    Article  PubMed  CAS  Google Scholar 

  • Luthra P, Sun D, Silverman RH and He B 2011 Activation of IFN-β expression by a viral mRNA through RNase L and MDA5. Proc. Natl. Acad. Sci. USA 108 2118–2123

    Article  PubMed  CAS  Google Scholar 

  • Madsen BE, Ramos EM, Boulard M, Duda K, Overgaard J, Nordsmark M, Wiuf C and Hansen LL 2008 Germline mutation in RNASEL predicts increased risk of head and neck, uterine cervix and breast cancer. PLoS ONE 3 e2492

    Article  PubMed  Google Scholar 

  • Malathi K, Dong B, Gale M Jr and Silverman RH 2007 Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448 816–819

    Article  PubMed  CAS  Google Scholar 

  • Malathi K, Saito T, Crochet N, Barton DJ, Gale M Jr and Silverman RH 2010 RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16 2108–2119

    Article  PubMed  CAS  Google Scholar 

  • Morin B, Rabah N, Boretto-Soler J, Tolou H, Alvarez K and Canard B 2010 High yield synthesis, purification and characterisation of the RNase L activators 5'-triphosphate 2'-5'-oligoadenylates. Antiviral Res. 87 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi M, Yoshimura A, Ishida N, Ueno Y and Kitade Y 2004 Contribution of Tyr712 and Phe716 to the activity of human RNase L. Eur. J. Biochem. 271 2737–2744

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi M, Goto Y and Kitade Y 2005 2-5A induces a conformational change in the ankyrin-repeat domain of RNase L. Proteins 60 131–138

    Article  PubMed  CAS  Google Scholar 

  • Pandey M and Rath PC 2004 Expression of interferon-inducible recombinant human RNase L causes RNA degradation and inhibition of cell growth in Escherichia coli. Biochem. Biophys. Res. Commun. 317 586–597

    Article  PubMed  CAS  Google Scholar 

  • Pandey M and Rath PC 2007 Organization of the interferon-inducible 2′,5′-oligoadenylate-dependent ribonuclease L (RNase L) gene of mouse. Mol. Biol. Rep. 34 97–104

    Article  PubMed  CAS  Google Scholar 

  • Pandey M, Bajaj GD and Rath PC 2004 Induction of the interferon-inducible RNA-degrading enzyme, RNase L, by stress-inducing agents in the human cervical carcinoma cells. RNA Biol. 1 21–27

    Article  PubMed  CAS  Google Scholar 

  • Player MR, Wondrak EM, Bayly SF and Torrence PF 1998 Ribonuclease L, a 2-5A-dependent enzyme: Purification to homogeneity and assays for 2-5A binding and catalytic activity. Methods 15 243–253

    Article  PubMed  CAS  Google Scholar 

  • Sadler AJ and Williams BRG 2008 Interferon-inducible antiviral effectors. Nat. Rev. Immunol. 8 559–568

    Article  PubMed  CAS  Google Scholar 

  • Silverman RH 2003 Implications for RNase L in prostate cancer biology. Biochemistry 42 1805–1812

    Article  PubMed  CAS  Google Scholar 

  • Silverman RH 2007 A scientific journey through the 2-5A/RNase L system. Cytokine Growth Factor Rev. 18 381–388

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama C, Kuramoto N, Nagashima R, Yoneyama M and Ogita K 2008 Enhanced expression of RNase L as a novel intracellular signal generated by NMDA receptors in mouse cortical neurons. Neurochem. Int. 53 71–78

    Article  PubMed  CAS  Google Scholar 

  • Tanaka N, Nakanishi M, Kusakabe Y, Goto Y, Kitade Y and Nakamura KT 2004 Structural basis for recognition of 2′,5′-linked oligoadenylates by human ribonuclease L. EMBO J. 23 3929–3938

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura A, Nakanishi M, Yatome C and Kitade Y 2002 Comparative study on the biological properties of 2′,5′-oligoadenylate derivatives with purified human RNase L expressed in E. coli. J. Biochem. 132 643–648

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Hassel BA and Silverman RH 1993 Expression cloning of 2-5A-dependent RNAase: A uniquely regulated mediator of interferon action. Cell 72 753–765

    Article  PubMed  CAS  Google Scholar 

  • Zhou A, Paranjape J, Brown TL, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C and Silverman RH 1997 Interferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 16 6355–6363

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof RH Silverman, Cleveland Clinic Foundation, OH, USA, for generously providing the pZC-5 human RNase L cDNA plasmid (Zhou et al. 1993) and the 2-5A cofactor. Research grant/facility to PCR and School of Life Sciences under the University of Potential for Excellence (UPOE), Capacity Buildup, UGC-RNRC, DST-Purse programmes of the Government of India are gratefully acknowledged. AG received the Junior/Senior Research Fellowship from the Council of Scientific and Industrial Research, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pramod C Rath.

Additional information

Corresponding editor: shahid jameel

[Gupta A and Rath PC 2012 Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L. J. Biosci. 37 1–11] DOI

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Rath, P.C. Expression, purification and characterization of the interferon-inducible, antiviral and tumour-suppressor protein, human RNase L. J Biosci 37, 103–113 (2012). https://doi.org/10.1007/s12038-011-9180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9180-4

Keywords

Navigation