Skip to main content
Log in

Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The peptide fragments obtained by cathepsin digestion of purified buffalo prolactin (buPRL) monomer have been characterized using SDS-PAGE and FPLC with regard to size and pI. Their antiangiogenic activity was tested in chick embryo chorioallantoic membrane (CAM) assay and the human endothelial cells wound healing assay. Antiangiogenic activity was observed in cathepsin-cleaved fragments from buPRL. Further, a peptide sequence 45A-46Q-47G-48K-49G-50F-51I-52T-53M-54A-55L-56N-57S-58C, which matched with human somatostatin (hSST), a known antiangiogenic factor, was located in the second loop between the first and second α-helices in the three-dimensional structure of buPRL, obtained by homology modelling. The synthetic peptide matching with SST sequence was found to exhibit antiangiogenic activity in both in vitro and ex vivo assays. It was also observed that all the peptides related to buPRL could antagonize the vascular endothelial growth factor (VEGF) and bradykinin (BK)-dependent production of endothelial nitric oxide (NO), which is a pre-requisite for endothelial tube formation. It is concluded therefore that an internal sequence in buPRL and peptide fragments derived from cathepsin-digested buPRL exhibit antiangiogenic activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BBBE:

bovine brain basal endothelial

BK:

bradykinin

buPRL:

buffalo prolactin

BUVE:

bovine umbilical vein endothelial

CAM:

chorioallantoic membrane

CD:

cathepsin D

DAF-FM:

diaminofluorescein

eNOS:

endothelial NOS

FGF:

fibroblast growth factor

FPLC:

fast-performance liquid chromatography

GH:

growth hormone

HRP:

horseradish peroxidase

hSST:

human somatostatin

HUVE:

human umbilical vein endothelial

KS:

Kaposi sarcoma

NOS:

NO synthase

rPRL:

rat prolactin

SST:

somatostatin

VEGF:

vascular endothelial growth factor

References

  • Albini A, Florio T, Giunciuglio D, Masiello L, Carlone S, Corsaro A, Thellung S, Cai T, Noonan DM and Schettini G 1999 Somatostatin controls Kaposi’s sarcoma tumor growth through inhibition of angiogenesis. FASEB J. 13 647–655

    PubMed  CAS  Google Scholar 

  • Arnold K, Bordoli L and Kopp JT 2006 The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22 195–201

    Article  PubMed  CAS  Google Scholar 

  • Baldocchi RA, Tan L, King DS and Nicoll CS 1993 Mass spectrometric analysis of the fragments produced by cleavage and reduction of rat prolactin: Evidence that the cleaving enzyme is cathepsin D. Endocrinology 133 935–938

    Article  PubMed  CAS  Google Scholar 

  • Barrie R, Woltering EA, Hajarizadeh H, Mueller C, Ure T and Fletcher WS 1993 Inhibition of angiogenesis by somatostatin and somatostatin-like compounds is structurally dependent. J. Surg. Res. 55 446–450

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 248–754

    Article  PubMed  CAS  Google Scholar 

  • Candiano G, Bruschi M, Musanta L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L and Righetti PG 2004 Blue silver:A very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis 25 1327–1333

    Article  PubMed  CAS  Google Scholar 

  • Clapp C 1987 Analysis of the proteolytic cleavage of prolactin by the mammary gland and liver of the rat: Characterization of the cleaved and 16K forms. Endocrinology 121 2055–2064

    Article  PubMed  CAS  Google Scholar 

  • Clapp C, López-Gómez FJ, Nava G, Corbacho A, Torner L, Macotela Y, Dueñas Z, Ochoa A, et al. 1998 Expression of prolactin mRNA and of prolactin-like proteins in endothelial cells: evidence for autocrine effects. J. Endocrinol. 158 137–144

    Article  PubMed  CAS  Google Scholar 

  • Clapp C, Martial JA, Guzman RC, Rentier-Delrue F and Weiner RI 1993 The 16-kilodalton N-terminal fragment of human prolactin is a potent inhibitor of angiogenesis. Endocrinology 133 1292–1299

    Article  PubMed  CAS  Google Scholar 

  • Clevenger CV, Furth PA, Hankinson SE and Schuler LA 2003 The role of prolactin in mammary carcinoma. Endocr. Rev. 24 1–27

    Article  PubMed  CAS  Google Scholar 

  • Corbacho AM, Macotela Y, Nava G, Torner L, Dueñas Z, Noris G, Morales MA, de la Escalera M and Clapp C 2000 Human umbilical vein endothelial cells express multiple prolactin isoforms. J. Endocrinol. 166 53–62

    Article  PubMed  CAS  Google Scholar 

  • Creighton TE 1993 The folded conformations of globular proteins; in Proteins structures and molecular properties (ed) TE Creighton (New York: WH Freeman and Company) pp. 201–260

    Google Scholar 

  • D’Angelo G, Martini J-F, Iiri T, Fantl WJ, Martial J and Weiner RI 1999 16K human prolactin inhibits vascular endothelial growth factor-induced activation of Ras in capillary endothelial cells. Mol. Endocrinol. 13 692–704

    Article  PubMed  Google Scholar 

  • Edgell C-JS, McDonald CC and Graham JE 1983 Permanent cell line expressing human factor VII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80 3734–3737

    Article  PubMed  CAS  Google Scholar 

  • Ferrante E, Pellegrini C, Bondioni S, Peverelli E, Locatelli M, Gelmini P, Luciani P, Peri A, et al. 2006 Octreotide promotes apoptosis in human somatotroph tumor cells by activating somatostatin receptor type 2. Endocr. Relat. Cancer 13 955–962

    Article  PubMed  CAS  Google Scholar 

  • Ferrara N, Clapp C and Weiner R 1991 The 16K fragment of prolactin specifically inhibits basal or fibroblast growth factor stimulated growth of capillary endothelial cells. Endocrinology 129 896–900

    Article  PubMed  CAS  Google Scholar 

  • Ferreira MA, Andrade SP, Pesquero JL, Feitosa MH, Oliveira GM, Rogana E, Nogueira JC and Beraldo WT 1992 Kallikrein-kinin system in the angiogenesis. Agents Actions Suppl. 38 165–174

    PubMed  CAS  Google Scholar 

  • Ferreira N and Henzel WJ 1989 Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem. Biophys. Res. Commun. 161 851–858

    Article  Google Scholar 

  • Florio T, Villa MV, Corsaro AA, Thellung CS, Culler MD, Pfeffer U, Noonan DM, Schettini G and Albini A 2003 Somatostatin inhibitors tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthesis and mitogen-activate protein kinase activities. Endocrinology 144 1574–1584

    Article  PubMed  CAS  Google Scholar 

  • Folkman J 1995 Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1 27–31

    Article  PubMed  CAS  Google Scholar 

  • Folkman J and Shing Y 1992 Angiogenesis. J. Biol. Chem. 267 10931–10934

    CAS  Google Scholar 

  • Gasteriger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD and Bairoch A 2005 Protein identification and analysis tools on the ExPASy server; in The proteomics protocols handbook (eds) JM Walker (New Jersey: Humana Press Inc) pp. 571–607

    Chapter  Google Scholar 

  • Goffin V, Norman M and Martial JA 1992 Alanine-scanning mutagenesis of human prolactin: importance of the 58–74 region for bioactivity. Mol. Endocrinol. 6 1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez C, Corbacho AM, Eiserich JP, Garcia C, Lopez-Barrera F, Morales-Tlalpan V, Barajas-Espinosa A, Diaz-Munoz M, et al. 2004 16K-prolactin inhibits activation of endothelial nitric oxide synthase, intracellular calcium mobilization and endothelium-dependent vasorelazation. Endocrinology 10 1210

    Google Scholar 

  • Guex N and Peitsch MC 1997 SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18 2714–2723

    Article  PubMed  CAS  Google Scholar 

  • Harrington MG 1990 Elution of protein from gels. Method Enzymol. 182 488–495

    Article  CAS  Google Scholar 

  • Ishikawa F, Miyazone K, Hellman U, Drexler H, Wernstedt C, Hagiwara K, Usuki K, Takaku F, Risau W and Heldin CH 1989 Identification of angiogenic activity and the cloning and expression of platelet-derived endothelial cell growth factor. Nature (London) 338 557–562

    Article  CAS  Google Scholar 

  • Iyer S and Acharya KR 2002 Angiogenesis: What we know and do not know. Proc. Indian Nat. Sci. Acad. B68 415–478

    Google Scholar 

  • Keeler C, Dannies PS and Hodsdon ME 2003 The tertiary structure and backbone dynamics of human prolactin. J. Mol. Biol. 328 1105–1121

    Article  PubMed  CAS  Google Scholar 

  • Khurana S, Kuns R and Ben-Jonathan N 1999a Heparin-binding property of human prolactin: A novel aspect of prolactin biology. Endocrinology 140 1026–1029

    Article  PubMed  CAS  Google Scholar 

  • Khurana S, Liby K, Buckley AR and Ben-Jonathan N 1999b Proteolysis of human prolactin: Resistance to cathepsin D and formation of a nonangiostatic, C-terminal 16K fragment by thrombin. Endocrinology 140 4127–4132

    Article  PubMed  CAS  Google Scholar 

  • Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y and Nagano T 1998 Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal. Chem. 70 2446–2456

    Article  PubMed  CAS  Google Scholar 

  • Kolluru GK, Tamilarasan KP, Rajkumar AS et al. 2007 Nitric oxide/cGMP protects endothelial cells from hypoxia-mediated leakiness. Eur. J. Cell Biol. 1–15

  • Laemmli UK 1970 Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature (London) 227 680–685

    Article  CAS  Google Scholar 

  • Lahlou H, Guillermet J, Hortala M, Vernejoul F, Pyronnet S, Bousquet C and Susini C 2004 Molecular signaling of somatostatin receptors. Ann. N.Y. Acad. Sci. 1014 121–131

    Article  PubMed  CAS  Google Scholar 

  • Lamalice L, Boeuf FL and Huot J 2007 Endothelial cell migration during angiogenesis. Circ. Res. 100 782–794

    Article  PubMed  CAS  Google Scholar 

  • Lee JS, Decker NK, Chatterjee S, Yao J, Friedman S and Shah V 2005 Mechanisms of nitric oxide interplay with Rho GTPase family members in modulation of actin membrane dynamics in pericytes and fibroblasts. Am. J. Pathol. 166 1861–1870

    Article  PubMed  CAS  Google Scholar 

  • Lkhider M, Castino R, Bouguyon E, Isidoro C and Ollivier-Bousquet M 2004 Cathepsin D released by lactating rat mammary epithelial cells is involved in prolactin cleavage under physiological conditions. J. Cell Sci. 117 5155–5164

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosenbrough NJ, Farr AL and Randall RJ 1951 Protein measurement with the folin phenol reagent. J. Biol. Chem. 193 265–275

    PubMed  CAS  Google Scholar 

  • Madri JA, Pratt BM and Tucker AM 1988 Phenotypic modulation of endothelial cells by transforming growth factor-β depends upon the composition and organization of the extracellular matrix. J. Cell Biol. 106 1375–1384

    Article  PubMed  CAS  Google Scholar 

  • Marks N, Grynbaum A and Lajtha A 1973 Pentapeptide (pepstatin) inhibition of brain acid protease. Science 181 949–951

    Article  PubMed  CAS  Google Scholar 

  • Mittra I 1980a A novel “cleaced PRL” in the rat pituitary: Part I biosynthesis, characterization and regulatory control. Biochem. Biophys. Res. Commun. 95 1750–1759

    Article  PubMed  CAS  Google Scholar 

  • Mittra I 1980b A novel “cleaced PRL” in the rat pituitary: Part II in vivo mammary mitogenic activity of its N-terminal 16K moiety. Biochem. Biophys. Res. Commun. 95 1760–1780

    Article  PubMed  CAS  Google Scholar 

  • Moncada S and Higgs A 1993 The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329 2002–2012

    Article  PubMed  CAS  Google Scholar 

  • Nathan C and Xie Q 1994 Nitric oxide synthase: roles, tolls, and controls. Cell 78 915–918

    Article  PubMed  CAS  Google Scholar 

  • Nguyen NQN, Tabruyn SP, Lins L, Lion M, Cornet AM, Lair F, Rentier-Delrue F, Brasseur R, Martial JA and Struman I 2006 Prolactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis. Proc. Natl. Acad. Sci. USA 103 14319–14324

    Article  PubMed  CAS  Google Scholar 

  • Nicoll CS 1997 Cleavage of prolactin by its target organs and the possible significance of this process. J. Mammary Gland Biol. Neoplasia 2 81–89

    Article  PubMed  CAS  Google Scholar 

  • Niemisto A, Dunmire V, Yli-Harja O, Zhang W and Shmulevich I 2005 Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans. Med. Imag, 24 549–553

    Article  Google Scholar 

  • Norman W 1997 Hormone (London: Academic press)

    Google Scholar 

  • Ochoa A, Montes de OP, Rivera JC, Dueñas Z, Nava G, Martínez de la EG and Clapp C 2001 Expression of prolactin gene and secretion of prolactin by rat retinal capillary endothelial cells. Invest. Ophthalmol. Visual Sci. 42 1639–1645

    CAS  Google Scholar 

  • Palmer RMJ, Ferrige AG and Moncada S 1989 Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature (London) 327 524–526

    Article  Google Scholar 

  • Panchal M and Muralidhar K 2008 Purification of monomeric prolactin charge isoform from buffalo pituitaries. Prep. Biochem. Biotech. 38 94–104

    Article  CAS  Google Scholar 

  • Papkoff H, Gospodarowicz D, Candiotti A and Li CH 1965 Preparation of ovine interstitial cell-stimulating hormone in high yield. Arch. Biochem. Biophys. 111 431–438

    Article  PubMed  CAS  Google Scholar 

  • Patel YC, Murthy KK, Escher EE, Banville D, Spiess J and Srikant CB 1990 Mechanism of action of somatostatin: an overview of receptor function and studies of the molecular characterization and purification of somatostatin receptor proteins. Metabolism 39 63–69

    Article  PubMed  CAS  Google Scholar 

  • Piwnica D, Touraine P, Struman I, tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA and Goffin V 2004 Cathepsin D processes human prolactin into multiple 16K-like N-terminal fragments: Study of their antiangiogenic properties and physiological relevance. Mol. Endocrinol. 18 2522–2542

    Article  PubMed  CAS  Google Scholar 

  • Piwnica D, Fernandez I, Binart N, Touraine P, Kelly PA and Goffin V 2006 A new mechanism for prolactin processing into 16K PRL by secreted cathepsin D. Mol. Endocrinol. 20 3263–3278

    Article  PubMed  CAS  Google Scholar 

  • Poitout L, Roubert P, Contour-Galcera MO, Moinet C, Lannoy J, Pommier J, Plas P, Bigg D and Thurieau C 2001 Identification of potent non-peptide somatostatin antagonists with sst3 selectivity. J. Med. Chem. 44 2990–3000

    Article  PubMed  CAS  Google Scholar 

  • Regoli D and Barabe J 1980 Pharmacology of bradykinin and related kinins. Pharmacol. Rev. 32 1–46

    PubMed  CAS  Google Scholar 

  • Reisine T and Bell GI 1995 Molecular biology of somatostatin receptors. Endocr. Rev. 16 427–442

    PubMed  CAS  Google Scholar 

  • Ribatti D, Vacca A, Roncali L and Dammacco F 1996 The chick embryo chorioallantoic membrane as a model for in vivo research on angiogenesis. Int. J. Dev. Biol. 40 1189–1197

    PubMed  CAS  Google Scholar 

  • Schwede T, Kopp J, Guex N and Peitsc MC 2003 SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res. 31 3381–3385

    Article  PubMed  CAS  Google Scholar 

  • Sinha YN and Gilligan TA 1984 A cleaved form of PRL in the mouse pituitary gland: Identification and comparison of in vitro synthesis a release in strains with high and low incidence of mammary tumors. Endocrinology 114 2046–2053

    Article  PubMed  CAS  Google Scholar 

  • Sinha YN, Gilligan TA, Lee DW, Hollingsworth D and Markoff E 1985 Cleaved prolactin: Evidence for its occurrence in human pituitary gland and plasma. J. Clin. Endocrinol. Metab. 60 239–243

    Article  PubMed  CAS  Google Scholar 

  • Staton CA, Stribbling SM, Tazzyman S, Hughes R, Brown NJ and Lewis CE 2004 Current methods for assaying angiogenesis in vitro and in vivo. Int. J. Exp. Pathol. 85 233–248

    Article  PubMed  CAS  Google Scholar 

  • Struman I, Bentzien F, Lee H, Mainfroid V, D’Angelo G, Goffin V, Weiner RI and Martial JA 1999 Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: novel mechanism for the regulation of angiogenesis. Proc. Natl. Acad. Sci. USA 96 1246–1251

    Article  PubMed  CAS  Google Scholar 

  • Towbin H, Staehelin T and Gordon J 1979 Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulode sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76 4350–4354

    Article  PubMed  CAS  Google Scholar 

  • Venes D and Thomas CL 2001 Taber’s cyclpedic medical dictionary (London: FA Davis company)

    Google Scholar 

  • Vogt S and Freitag R 1998 Displacement chromatography using the UNO Q continuous bed column as a stationary phase. Biotechnol. Prog. 14 742–748

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The financial assistance provided by Indian Council of Cultural Relations and University of Delhi through ‘R&D Doctoral Research Programme’ support scheme is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kambadur Muralidhar.

Additional information

Corresponding editor: Maneesha Inamdar

[Lee J, Majumder S, Chatterjee S and Muralidhar K 2011 Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis. J. Biosci. 36 341–354] DOI doi:10.1007/s12038-011-9073-6

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/Jun2011/pp341–354/suppl.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Majumder, S., Chatterjee, S. et al. Inhibitory activity of the peptides derived from buffalo prolactin on angiogenesis. J Biosci 36, 341–354 (2011). https://doi.org/10.1007/s12038-011-9073-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9073-6

Keywords

Navigation