Skip to main content
Log in

Water-mediated ionic interactions in protein structures

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

It is well known that water molecules play an indispensable role in the structure and function of biological macromolecules. The water-mediated ionic interactions between the charged residues provide stability and plasticity and in turn address the function of the protein structures. Thus, this study specifically addresses the number of possible water-mediated ionic interactions, their occurrence, distribution and nature found in 90% non-redundant protein chains. Further, it provides a statistical report of different charged residue pairs that are mediated by surface or buried water molecules to form the interactions. Also, it discusses its contributions in stabilizing various secondary structural elements of the protein. Thus, the present study shows the ubiquitous nature of the interactions that imparts plasticity and flexibility to a protein molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Barlow DJ and Thornton JM 1983 Ion-pairs in proteins. J. Mol. Biol. 168 867–885

    Article  PubMed  CAS  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN and Bourne PE 2000 The Protein Data Bank. Nucleic Acids Res. 28 235–242

    Article  PubMed  CAS  Google Scholar 

  • Bogin O, Levin I, Hacham Y, Tel-Or S, Peretz M, Frolow F and Burstein Y 2002 Structural basis for the enhanced thermal stability of alcohol dehydrogenase mutants from the mesophilic bacterium Clostridium beijerinckii: contribution of salt bridging. Protein Sci. 11 2561–2574

    Article  PubMed  CAS  Google Scholar 

  • Chaplin M 2006 Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. 7 861–866

    Article  PubMed  CAS  Google Scholar 

  • Davey CA, Sargent DF, Luger K, Maeder AW and Richmond TJ 2002 Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 Å resolution. J. Mol. Biol. 319 1097–1113

    Article  PubMed  CAS  Google Scholar 

  • Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf Watz M, Bosco DA, Skalicky JJ, Kay LE and Kern D 2005 Intrinsic dynamics of an enzyme underlies catalysis. Nature (London) 438 36–37

    Article  Google Scholar 

  • Fersht AR 1972 Conformational equilibria in and chymotrypsin. The energetics and importance of the salt bridge. J. Mol. Biol. 64 497–509

    Article  PubMed  CAS  Google Scholar 

  • Franks F 2002 Protein stability: the value of ‘old literature’. Biophys. Chem. 96 117–127

    Article  PubMed  CAS  Google Scholar 

  • Friemann R, Ivkovic-Jensen MM, Lessner DJ, Yu CL, Gibson DT, Parales RE, Eklund H and Ramaswamy S 2005 Structural insight into the dioxygenation of nitroarene compounds: the crystal structure of nitrobenzene dioxygenase. J. Mol. Biol. 348 1139–1151

    Article  PubMed  CAS  Google Scholar 

  • Frishman D and Argos P 1995 Knowledge-based protein secondary structure assignment. Proteins 23 566–579

    Article  PubMed  CAS  Google Scholar 

  • Grove A 2003 Surface salt bridges modulate DNA wrapping by the type II DNA-binding protein TF1. Biochemistry 42 8739–8747

    Article  PubMed  CAS  Google Scholar 

  • Halle B 2004 Protein hydration dynamics in solution: a critical survey. Philos. Trans. R. Soc. Lond., Ser. B 359 1207–1223

    Article  CAS  Google Scholar 

  • Hobohm U and Sander C 1994 Enlarged representative set of protein structures. Protein Sci. 3 522–524

    Article  PubMed  CAS  Google Scholar 

  • Hubbard SJ and Thornton JM 1993 NACCESS Computer Program. Department of Biochemistry and Molecular Biology, University College, London.

    Google Scholar 

  • Jiang L, Kuhlman B, Kortemme T and Baker D 2005 A ‘solvated rotamer’ approach to modeling water-mediated hydrogen bonds at protein-protein interfaces. Proteins 58 893–904

    Article  PubMed  CAS  Google Scholar 

  • Kumar S and Nussinov R 2002 Relationship between ion pair geometries and electrostatic strengths in proteins. Biophys. J. 83 1595–1612

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Ma B, Tsai CJ and Nussinov R 2000 Electrostatic strengths of salt bridges in thermophilic and mesophilic glutamate dehydrogenase monomers. Proteins 38 368–383

    Article  PubMed  CAS  Google Scholar 

  • Langhorst U, Backmann J, Loris R and Steyaert J 2000 Analysis of a water mediated protein-protein interactions within RNase T1. Biochemistry 39 6586–6593.

    Article  PubMed  CAS  Google Scholar 

  • Levy Y and Onuchic JN 2006 Water mediation in protein folding and molecular recognition. Annu. Rev. Biophys. Biomol. Struct. 35 389–415

    Article  PubMed  CAS  Google Scholar 

  • McDonald IK and Thornton JM 1999 Satisfying hydrogen bonding potential in proteins. J. Mol. Biol. 238 777–793

    Article  Google Scholar 

  • Mehl AF, Demeler B and Zraikat A 2007 A water mediated electrostatic interaction gives thermal stability to the ‘tail’ region of the GrpE protein from E. coli. Protein J. 26 239–245

    Article  PubMed  CAS  Google Scholar 

  • Min KC, Kovall RA and Hendrickson WA 2003 Crystal structure of human alpha-tocopherol transfer protein bound to its ligand: implications for ataxia with vitamin E deficiency. Proc. Natl. Acad. Sci. USA 100 14713–14718

    Article  PubMed  CAS  Google Scholar 

  • Morton CJ and Ladbury JE 1996 Water-mediated protein-DNA interactions: the relationship of thermodynamics to structural detail. Protein Sci. 5 2115–2118

    Article  PubMed  CAS  Google Scholar 

  • Murzin AG, Brenner SE, Hubbard T and Chothia C 1995 SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247 536–540

    PubMed  CAS  Google Scholar 

  • Musafia B, Buchner V and Arad D 1995 Complex salt bridges in proteins: statistical analysis of structure and function. J. Mol. Biol. 254 761–770

    Article  PubMed  CAS  Google Scholar 

  • Natesh R, Manikandan K, Bhanumoorthy P, Viswamitra MA and Ramakumar S 2003 Thermostable xylanase from Thermoascus aurantiacus at ultrahigh resolution (0.89 A) at 100 K and atomic resolution (1.11 A) at 293 K refined anisotropically to small-molecule accuracy. Acta Cryst. D59 105–117

    CAS  Google Scholar 

  • Opera TI, Hummer G and Garcia AR 1997 Identification of a functional water channel in cytochrome P450 enzymes. Proc. Natl. Acad. Sci. USA 94 2133–2138

    Article  Google Scholar 

  • Otting G, Liepinsh E and Wuthrich K 1991 Protein hydration in aqueous solution. Science 254 974–980

    Article  PubMed  CAS  Google Scholar 

  • Papoian GA, Ulander J and Wolynes PG 2003 Role of water mediated interactions in protein-protein recognition landscapes. J. Am. Chem. Soc. 125 9170–9178

    Article  PubMed  CAS  Google Scholar 

  • Papoian GA, Ulander J, Eastwood MP, Luthey-Schulten Z and Wolynes PG 2004 Water in protein structure prediction. Proc. Natl. Acad. Sci. USA 101 3352–3357

    Article  PubMed  CAS  Google Scholar 

  • Park S and Saven JG 2005 Statistical and molecular dynamics studies of buried waters in globular proteins. Proteins 60 450–463

    Article  PubMed  CAS  Google Scholar 

  • Pedersen AK, Peters GH, MØller KB, Lversen LF and Kastrup JS 2004 Water-molecule network and active-site flexibility of apo protein tyrosine phosphatase 1B. Acta Cryst. D60 1527–1534

    CAS  Google Scholar 

  • Perutz MF 1970 Stereochemistry of cooperative effects in haemoglobin. Nature (London) 228 726–739

    Article  CAS  Google Scholar 

  • Poornima CS and Dean PM 1995 Hydration in drug design. 1. Multiple hydrogen-bonding features of water molecules in mediating protein-ligand interactions. J. Comput. Aided. Mol. Des. 9 500–512

    Article  PubMed  CAS  Google Scholar 

  • Prasad BV and Suguna K 2002 Role of water molecules in the structure and function of aspartic proteinases. Acta Cryst. D58 250–259

    CAS  Google Scholar 

  • Pratt LR, Hummer G and Garcia AR 1994 Ion pair potentials-of-mean-force in water. Biophys. Chem. 51 147–165

    Article  CAS  Google Scholar 

  • Ranjani CV, Rangarajan S, Michael D, Roy S and Sekar K 2008 Role of water molucules and ion pairs in Dps and related ferritin-like structures. Int. J. Biol. Macromol. 43 333–338

    Article  PubMed  CAS  Google Scholar 

  • Raschke TM 2006 Water structure and interactions with protein surfaces. Curr. Opin. Struct. Biol. 16 152–159

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Bahadur RP, Chakrabarti P and Janin J 2005 Hydration of protein-protein interfaces. Proteins 60 36–45

    Article  PubMed  CAS  Google Scholar 

  • Royer WE, Pardanani A, Gibson QH, Peterson ES and Friedman JM 1996 Ordered water molecules as key allosteric mediators in a cooperative dimeric hemoglobin. Proc. Natl. Acad. Sci. USA 93 14526–14531

    Article  PubMed  CAS  Google Scholar 

  • Saecker RM and Record MR Jr 2002 Protein surface salt bridges and paths for DNA wrapping. Curr. Opin. Struct. Biol. 12 311–319

    Article  PubMed  CAS  Google Scholar 

  • Schimer T and Evans PR 1990 Structural basis of the allosteric behaviour of phosphofructokinase. Nature (London) 343 140–145

    Article  Google Scholar 

  • Schwarzenbacher R, Von Delft F, Canaves JM, Brinen LS, Dai X, Deacon AM, Elsliger MA, Eshaghi S, et al 2004 Crystal structure of an iron-containing 1,3-propanediol dehydrogenase (TM0920) from Thermotoga maritima at 1.3 A resolution. Proteins 54 174–177

    Article  PubMed  CAS  Google Scholar 

  • Sekar K, and Sundaralingam M 1999 High-resolution refinement of the orthorhombic bovine pancreatic phospholipase A2/span. Acta Cryst. D55 46–50

    CAS  Google Scholar 

  • Shankar BA G, Sarani R, Michael D, Mridula P, Ranjani CV, Sowmiya G, Vansundhar B, Sudha P, Jeyakanthan J, Velmurugan D and Sekar K 2007 Ion pairs in non-redundant protein structures. J. Biosci. 32 692–704

    Google Scholar 

  • Shankar PK and Sekar K 2009 Structural and functional role of water molecules in bovine pancreatic phospholipase A2: A data-mining approach. Acta Cryst. D65 74–84

    Google Scholar 

  • Skov LK, Mirza O, Henriksen A, De Montalk GP, Remaud-Simeon M, Sarcabal P, Willemot RM, Monsan P and Gajhede M 2001 Amylosucrase, a glucan-synthesizing enzyme from the alpha-amylase family. J. Biol.Chem. 276 25273–25278

    Article  PubMed  CAS  Google Scholar 

  • Smith DK, Radivojac P, Obradovic Z, Dunker AK, Zhu G 2003 Improved amino acid flexibility parameters. Protein Sci. 12(5) 1060–1072

    Article  PubMed  CAS  Google Scholar 

  • Smolin N, Oleinikova A, Brovchenko I, Geiger A and Winter R 2005 Properties of spanning water networks at protein surfaces. J. Phys. Chem. B 109 10995–11005

    Article  PubMed  CAS  Google Scholar 

  • Teyra J and Pisabarro MT 2007 Characterization of interfacial solvent in protein complexes and contribution of wet spots to the interface description. Proteins 67 1087–1095

    Article  PubMed  CAS  Google Scholar 

  • Van Dijk ADJ and Bonvin AMJJ 2006 Solvated docking: introducing water into the modelling of biomolecular complexes. Bioinformatics 22 2340–2347

    Article  PubMed  Google Scholar 

  • Vila J, Williams RL, Grant JA, WÓjcik J and Scheraga HA 1992 The intrinsic helix-forming tendency of L-alanine. Proc. Natl. Acad. Sci. USA 89 7821–7825

    Article  PubMed  CAS  Google Scholar 

  • Watt W, Koeplinger KA, Mildner AM, Heinrikson RL, Tomasselli AG and Watenpaugh KD 1999 The atomic-resolution structure of human caspase-8, a key activator of apoptosis. Structure 7 1135–1143

    Article  PubMed  CAS  Google Scholar 

  • Wikstrom M, Ribacka C, Molin M, Laakkonen L, Verkhovsky M and Puustinen A 2005 Gating of proton and water transfer in the respiratory enzyme cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 102 10478–10481

    Article  PubMed  Google Scholar 

  • Xu D, Tsai CJ and Nussinov R 1997 Hydrogen bonds and salt bridges across protein-protein interfaces. Protein Eng. 10 999–1012

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Wang L, Kao YT, Qiu W, Yang Y, Okobiah O and Zhong D 2007 Mapping hydration dynamics around a protein surface. Proc. Natl. Acad. Sci. USA 104 18461–18466

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author (KS) thanks the Department of Biotechnology for financial support. The use of the Bioinformatics Centre and the Interactive Graphics Facility is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Sekar.

Additional information

Corresponding editor: Amit Chattopadhyay

[Sabarinathan R, Aishwarya K, Sarani R, Vaishnavi MK and Sekar K 2011 Water-mediated ionic interactions in protein structures. J. Biosci. 36 253–263] DOI 10.1007/s12038-011-9067-4

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/Jun2011/pp253–263/suppl.pdf

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 85.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabarinathan, R., Aishwarya, K., Sarani, R. et al. Water-mediated ionic interactions in protein structures. J Biosci 36, 253–263 (2011). https://doi.org/10.1007/s12038-011-9067-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-011-9067-4

Keywords

Navigation