Skip to main content
Log in

Cullin4B/E3-ubiquitin ligase negatively regulates β-catenin

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

β-catenin is the key transducer of Wingless-type MMTV integration site family member (Wnt) signalling, upregulation of which is the cause of cancer of the colon and other tissues. In the absence of Wnt signals, β-catenin is targeted to ubiquitin-proteasome-mediated degradation. Here we present the functional characterization of E3-ubiquitin ligase encoded by cul4B. RNAi-mediated knock-down of Cul4B in a mouse cell line C3H T10 (1/2) results in an increase in β-catenin levels. Loss-of-function mutation in Drosophila cul4 also shows increased β-catenin/Armadillo levels in developing embryos and displays a characteristic naked-cuticle phenotype. Immunoprecipitation experiments suggest that Cul4B and β-catenin are part of a signal complex in Drosophila, mouse and human. These preliminary results suggest a conserved role for Cul4B in the regulation of β-catenin levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CycE:

cyclin E

GSK-3:

glycogen synthase kinase-3

LEF:

lymphoid enhancing factor

RT-PCR:

reverse transcriptase-polymerase chain reaction

SCF:

Skp1, Cdc53/Cullin1, F-box protein

TCF:

T-cell factor

Wg:

Wingless

Wnt:

Wingless-type MMTV integration site family member

References

  • Aberle H, Bauer A, Stappert J, Kispert A and Kemler R 1997 β-catenin is a target for the ubiquitin-proteasome pathway; EMBO J. 16 3797–3804

    Article  CAS  Google Scholar 

  • Batth B K, Tripathi R and Srinivas U K 2001 Curcumin-induced differentiation of mouse embryonal carcinoma PCC4 cells; Differentiation 68 133–140

    Article  CAS  Google Scholar 

  • Bejsovec A and Wieschaus E 1993 Segment polarity gene interactions modulate epidermal patterning in Drosophila embryos; Development 119 501–517

    CAS  PubMed  Google Scholar 

  • Bisht K S, Revathi C J and Srinivas U K 1994 Differentiation of mouse embryonal carcinoma cells PCC4 by heat shock and the kinetics of induction of heat shock proteins; Indian J. Biochem. Biophys. 31 295–300

    CAS  PubMed  Google Scholar 

  • Cong F, Zhang J, Pao W, Zhou P and Varmus H 2003 A protein knockdown strategy to study the function of β-catenin in tumorigenesis; BMC Mol. Biol. 4 10

    Article  Google Scholar 

  • Dealy M J, Nguyen K V, Lo J, Gstaiger M, Krek W, Elson D, Arbeit J, Kipreos E T and Johnson R S 1999 Loss of cull results in early embryonic lethality and dysregulation of cyclin E; Nat. Genet. 23 245–248

    Article  CAS  Google Scholar 

  • Deshaies R J 1999 SCF and Cullin/Ring H2-based ubiquitin ligases; Annu. Rev. Cell. Dev. Biol. 15 435–467

    Article  CAS  Google Scholar 

  • Gachelin G, Kemler R, Kelly F and Jacob F 1977 PCC4, a new cell surface antigen common to multipotential embryonal carcinoma cells, spermatozoa, and mouse early embryos; Dev. Biol. 57 199–209

    Article  CAS  Google Scholar 

  • Higa L A, Mihaylov I S, Banks D P, Zheng J and Zhang H 2003 Radiation-mediated proteolysis of CDT1 by CUL4-ROC1 and CSN complexes constitutes a new checkpoint; Nat. Cell Biol. 5 1008–1015

    Article  CAS  Google Scholar 

  • Hooper J E 1994 Distinct pathways for autocrine and paracrine wingless signalling in Drosophila embryos; Nature (London) 372 461–464

    Article  CAS  Google Scholar 

  • Jaiswal A S, Marlow B P, Gupta N and Narayan S 2002 β-cateninmediated transactivation and cell-cell adhesion pathways are important in curcumin (diferuylmethane)-induced growth arrest and apoptosis in colon cancer cells; Oncogene 21 8414–8427

    Article  CAS  Google Scholar 

  • Jiang J and Struhl H 1998 Regulation of the hedgehog and wingless signalling pathways by the F-box/WD40-repeat protein Slimb; Nature (London) 391 493–496

    Article  CAS  Google Scholar 

  • Kipreos E T, Lander L E, Wing J, He W W and Hedgecock E M 1996 cul-1 is required for cell cycle exit in C. elegans and identifies a novel gene family; Cell 85 829–839

    Article  CAS  Google Scholar 

  • Kitagawa M, Hatakeyama S, Shirane M, Matsumoto M, Ishida N, Hattori K, Nakamichi I, Kikuchi A, Nakayama K and Nakayama K 1999 An F-box protein, FWD1, mediates ubiquitin dependent proteolysis of β-catenin; EMBO J. 18 2401–2410

    Article  CAS  Google Scholar 

  • Lawrence P A 1992 The making of a fly (Oxford, UK: Blackwell) pp 101–103

    Google Scholar 

  • Li B, Ruiz J C and Chun KT 2002 cul-4A is critical for early embryonic development; Mol. Cell. Biol. 22 4997–5005

    Article  CAS  Google Scholar 

  • Nakayama K, Hatakeyama S, Maruyama S, Kikuchi A, Onoe K, Good R A and Nakayama KI 2003 Impaired degradation of inhibitory subunit of NF-κ B (I κ B) and β-catenin as a result of targeted disruption of the β-TrCP1 gene; Proc. Natl. Acad. Sci. USA 100 8752–8757

    Article  CAS  Google Scholar 

  • Noordermeer J, Johnston P, Rijsewijk F, Nusse R and Lawrence P A 1992 The consequences of ubiquitous expression of the wingless gene in the Drosophila embryo; Development 116 711–719

    CAS  PubMed  Google Scholar 

  • Orford K, Crockett C, Jensen J P, Weissman A M and Byers S W 1997 Serine phosphorylation-regulated ubiquitination and degradation of β-catenin; J. Biol. Chem. 272 24735–24738

    Article  CAS  Google Scholar 

  • Ou C-Y, Lin Yi-F, Chen Y-J and Chien C-T 2002 Distinct protein degradation mechanisms mediated by Cul1 and Cul3 controlling Ci stability in Drosophila eye development; Genes Dev. 16 2403–2414

    Article  CAS  Google Scholar 

  • Peifer M, Sweeton D, Casey M and Wieschaus E 1994 Wingless signal and Zeste-white 3 kinase trigger opposing changes in the intracellular distribution of Armadillo. Development 120 369–380

    CAS  PubMed  Google Scholar 

  • Petroski M D and Deshaies R J 2005 Function and regulation of cullin-ring ubiquitin ligases; Nat. Rev. Mol. Cell Biol. 6 9–20

    Article  CAS  Google Scholar 

  • Podust V N, Brownell J E, Gladysheva T B, Luo R S, Wang C, Coggins M B, Pierce J W, Lightcap E S and Chau V 2000 A Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination; Proc. Natl. Acad. Sci. USA 97 4579–4584

    Article  CAS  Google Scholar 

  • Polakis P 1997 The adenomatous polyposis coli (APC) tumor suppressor; Biochim. Biophys. Acta 1332 F127–F147

    CAS  PubMed  Google Scholar 

  • Polakis P 1999 The oncogenic activation of β-catenin; Curr. Opin. Genet. Dev. 9 15–21

    Article  CAS  Google Scholar 

  • Tripathi R, Sastry K S, Kota S K and Srinivas U K 2005 Cloning and characterization of mouse cullin4B/E3 ubiquitin ligase; J. Biosci. 30 329–337

    Article  CAS  Google Scholar 

  • Wang Y, Penfold S, Tang X, Hattori N, Riley P, Harper J W, Cross J C and Tyers M 1999 Deletion of the cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E; Curr. Biol. 9 1191–1194

    Article  CAS  Google Scholar 

  • Zhong W, Feng H, Santiago F E and Kipreos E T 2003 CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing; Nature (London) 423 885–889

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Usha K. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tripathi, R., Kota, S.K. & Srinivas, U.K. Cullin4B/E3-ubiquitin ligase negatively regulates β-catenin. J. Biosci. 32 (Suppl 2), 1133–1138 (2007). https://doi.org/10.1007/s12038-007-0114-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0114-0

Keywords

Navigation