Skip to main content
Log in

Modelling spatio-temporal interactions within the cell

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Biological phenomena at the cellular level can be represented by various types of mathematical formulations. Such representations allow us to carry out numerical simulations that provide mechanistic insights into complex behaviours of biological systems and also generate hypotheses that can be experimentally tested. Currently, we are particularly interested in spatio-temporal representations of dynamic cellular phenomena and how such models can be used to understand biological specificity in functional responses. This review describes the capability and limitations of the approaches used to study spatio-temporal dynamics of cell signalling components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeli D, Ferrell J E Jr and Sontag E D 2004 Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems; Proc. Natl. Acad. Sci. USA 101 1822–1827

    Article  PubMed  CAS  Google Scholar 

  • Batada N N, Shepp L A and Siegmund D O 2004 Stochastic model of protein-protein interaction: why signalling proteins need to be colocalized; Proc. Natl. Acad. Sci. USA 101 6445–6449

    Article  PubMed  CAS  Google Scholar 

  • Batada N N, Shepp L A, Siegmund D O and Levitt M 2006 Spatial Regulation and the Rate of Signal Transduction Activation; PLoS Comput. Biol. 2 e44

    Article  PubMed  CAS  Google Scholar 

  • Bhalla U S and Iyengar R 1999 Emergent properties of networks of biological signalling pathways; Science 283 381–387

    Article  PubMed  CAS  Google Scholar 

  • Bhalla U S and Iyengar R 2001a Functional modules in biological signalling networks; Novartis Found. Symp. 239 4–13; discussion 13–15, 45–51

    Article  PubMed  CAS  Google Scholar 

  • Bhalla, U S and Iyengar R 2001b Robustness of the bistable behaviour of a biological signalling feedback loop; Chaos 11 221–226

    Article  PubMed  CAS  Google Scholar 

  • Black J W and Leff P 1983 Operational models of pharmacological agonism; Proc R Soc London B Biol. Sci. 220 141–162

    Article  CAS  Google Scholar 

  • Cussler E L 1994 Diffusion, mass transfer in fluid systems (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Ferrell J E and Xiong W 2001 Bistability in cell signalling: How to make continuous processes discontinuous, and reversible processes irreversible; Chaos 11 227–236

    Article  PubMed  CAS  Google Scholar 

  • Fong S S, Burgard A P, Herring C D, Knight E M, Blattner F R, Maranas C D and Palsson B O 2005 In silico design and adaptive evolution of Escherichia coli for production of lactic acid; Biotechnol. Bioeng. 91 643–648

    Article  PubMed  CAS  Google Scholar 

  • Gillespie D T 1977 Exact Stochastic Simulation of Coupled Chemical Reactions; J. Phys. Chem. 81 2340–2361

    Article  CAS  Google Scholar 

  • Hautaniemi S, Kharait S, Iwabu A, Wells A and Lauffenburger D A 2005 Modelling of signal-response cascades using decision tree analysis. Bioinformatics 21 2027–2035

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin A L and Huxley A F 1952 A quantitative description of membrane current and its application to conduction and excitation in nerve; J. Physiol. 117 500–544

    PubMed  CAS  Google Scholar 

  • Kenakin T 2004 Efficacy as a vector: the relative prevalence and paucity of inverse agonism; Mol. Pharmacol. 65 2–11

    Article  PubMed  CAS  Google Scholar 

  • Kowalewski J M, Uhlen P, Kitano H and Brismar H 2006 Modelling the impact of store-operated Ca(2+) entry on intracellular Ca(2+) oscillations; Math Biosci. (in press)

  • Leff P, Scaramellini C, Law C and McKechnie K 1997 A three-state receptor model of agonist action. Trends Pharmacol. Sci. 18 355–362

    PubMed  CAS  Google Scholar 

  • Lemerle C, Di Ventura B and Serrano L 2005 Space as the final frontier in stochastic simulations of biological systems; FEBS Lett. 579 1789–1794

    Article  PubMed  CAS  Google Scholar 

  • Ma’ayan A, Jenkins S L, Neves S, Hasseldine A, Grace E, Dubin-Thaler B, Eungdamrong N J, Weng G, Ram P T, Rice J J, Kershenbaum A, Stolovitzky G A, Blitzer R D and Iyengar R 2005 Formation of regulatory patterns during signal propagation in a Mammalian cellular network; Science 309 1078–83

    Article  PubMed  CAS  Google Scholar 

  • Mayawala K, Vlachos D G and Edwards J S 2006 Spatial modelling of dimerization reaction dynamics in the plasma membrane: Monte Carlo vs. continuum differential equations; Biophys. Chem. 121 194–208

    Article  PubMed  CAS  Google Scholar 

  • Papin J A, Hunter T, Palsson B O and Subramaniam S 2005 Reconstruction of cellular signalling networks and analysis of their properties; Nat. Rev. Mol. Cell Biol. 6 99–111

    Article  PubMed  CAS  Google Scholar 

  • Pertz O, Hodgson L, Klemke R L and Hahn K M 2006 Spatiotemporal dynamics of RhoA activity in migrating cells; Nature (London) 440 1069–1072

    Article  CAS  Google Scholar 

  • Saha K and Schaffer D V 2006 Signal dynamics in Sonic hedgehog tissue patterning; Development 133 889–900

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Jayaraman A and Hahn J 2006 Modelling regulatory mechanisms in IL-6 signal transduction in hepatocytes; Biotechnol Bioeng. (in press)

  • Stamatakis M and Mantzaris N V 2006 Modelling of ATP-mediated signal transduction and wave propagation in astrocytic cellular networks; J. Theor. Biol. (in press)

  • Thiele I, Vo T D, Price N D and Palsson B O 2005 Expanded metabolic reconstruction of Helicobacter pylori (iIT341 GSM/GPR): an in silico genome-scale characterization of single-and double-deletion mutants; J. Bacteriol. 187 5818–5830

    Article  PubMed  CAS  Google Scholar 

  • Turing A 1952 The Chemical Basis of Morphogenesis. Philos. Trans. R. Soc. Series B 237 37–72

    Article  Google Scholar 

  • Varma A, Morbidelli M and Wu H 1999 Parametric sensitivity in chemical systems (Cambridge, UK: Cambridge University Press)

    Google Scholar 

  • Wang Y, Botvinick E L, Zhao Y, Berns M W, Usami S, Tsien R Y and Chien S 2005 Visualizing the mechanical activation of Src; Nature (London) 434 1040–1045

    Article  CAS  Google Scholar 

  • Wiley H S, Shvartsman S Y and Lauffenburger D A 2003 Computational modelling of the EGF-receptor system: a paradigm for systems biology; Trends Cell Biol. 13 43–50

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Padmini Rangamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rangamani, P., Iyengar, R. Modelling spatio-temporal interactions within the cell. J Biosci 32, 157–167 (2007). https://doi.org/10.1007/s12038-007-0014-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0014-3

Keywords

Navigation