Skip to main content
Log in

ProRegIn: A regularity index for the selection of native-like tertiary structures of proteins

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Automated protein tertiary structure prediction from sequence information alone remains an elusive goal to computational prescriptions. Dividing the problem into three stages viz. secondary structure prediction, generation of plausible main chain loop dihedrals and side chain dihedral optimization, considerable progress has been achieved in our laboratory (http://www.scfbio-iitd.res.in/bhageerath/index.jsp) and elsewhere for proteins with less than 100 amino acids. As a part of our on-going efforts in this direction and to facilitate tertiary structure selection/rejection in containing the combinatorial explosion of trial structures for a specified amino acid sequence, we describe here a web-enabled tool ProRegIn (Protein Regularity Index) developed based on the regularity in the ϕ, ψ dihedral angles of the amino acids that constitute loop regions. We have analysed the dihedrals in loop regions in a non-redundant dataset of 7351 proteins drawn from the Protein Data Bank and categorized them as helix-like or sheet-like (regular) or irregular. We noticed that the regularity thus defined exceeds 86% for ϕ barring glycine and 70% for ψ for all the amino acid side chains including glycine, compelling us to reexamine the conventional view that loops are irregular regions structurally. The regularity index is presented here as a simple tool that finds its application in protein structure analysis as a discriminatory scoring function for rapid screening before the more compute intensive atomic level energy calculations could be undertaken. The tool is made freely accessible over the internet at www.scfbio-iitd.res.in/software/proregin.jsp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bansal M, Kumar S and Velavan R 2000 HELANAL: A program to characterize helix geometry in proteins; J. Biomol. Struct. Dyn. 17 811–819

    PubMed  CAS  Google Scholar 

  • Berman H M, Westbrook J, Feng Z, Gilliland G, Bhat T N, Weissig H, Shindyalov I N and Bourne P E 2000 The Protein Data Bank; Nucleic Acids Res. 28 235–242

    Article  PubMed  CAS  Google Scholar 

  • Betancourt M R and Skolnick J 2004 Local propensities and statistical potentials of backbone dihedral angles in proteins; J. Mol. Biol. 342 635–649

    Article  PubMed  CAS  Google Scholar 

  • Blundell T L, Carney D, et al 1988 18th Sir Hans Krebs Lecture. Knowledge-based protein modeling and design; Eur. J. Biochem. 172 513–520

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri R E and Karplus M 1987 Prediction of the folding of short polypeptide segments by uniform conformational sampling; Biopolymers 26 137–168

    Article  PubMed  CAS  Google Scholar 

  • Bruccoleri R E, Haber E, et al 1988 Structure of antibody hypervariable loops reproduced by a conformational search algorithm; Nature (London) 335 564–568

    Article  CAS  Google Scholar 

  • Bruccoleri R E and Karplus M 1990 Conformational sampling using high temperature molecular dynamics; Biopolymers 29 1847–1862

    Article  PubMed  CAS  Google Scholar 

  • Chou P Y and Fasman G D 1974 Conformational parameters for amino acids in helical, beta-sheet and random coil regions calculated from proteins; Biochemistry 13 211–222

    Article  PubMed  CAS  Google Scholar 

  • Chou P Y and Fasman G D 1977 β-turns in proteins; J. Mol. Biol. 115 135–175

    Article  PubMed  CAS  Google Scholar 

  • Claessens M, Van Cutsem E, et al 1989 Modeling the polypeptide backbone with ’spare parts’ from known protein structures; Protein Eng. 2 335–345

    Article  PubMed  CAS  Google Scholar 

  • Creighton T E 1996 Proteins: Structures and Molecular Properties 2nd edition (New York: W H Freeman)

    Google Scholar 

  • Donate L E, Rufino S D, Canard L H J and Blundell T L 1996 Conformational analysis and clustering of short and medium size loops connecting regular secondary structures. A database for modeling and prediction; Protein Sci. 5 2600–2616

    PubMed  CAS  Google Scholar 

  • Dyson H J, Rance M, Houghten R A, Lerner R A and Wright P E 1988 Folding of immunogenic peptide fragments of proteins in water solution 1. Sequence requirements for the formation of a reverse turn; J. Mol. Biol. 201 161–200

    Article  PubMed  CAS  Google Scholar 

  • Edwards M S, Sternberg M J E and Thornton J M 1987 Structure and sequence patterns in the loops of βαβ units; Protein Eng. 1 173–181

    Article  PubMed  CAS  Google Scholar 

  • Efimov A V 1991 Structure of alpha-alpha hairpins with short connections; Protein Eng. 4 245–250

    Article  PubMed  CAS  Google Scholar 

  • Efimov A V 1993 Standard structures in proteins; Prog. Biophys. Mol. Biol. 60 201–239

    Article  PubMed  CAS  Google Scholar 

  • Falcomer C M et al 1992 Chain reversals in model peptides: studies of cystine-containing cyclic peptides 3. Conformational free energies of cyclization of tetrapeptides of sequence Ac-Cys-Pro-X-Cys-NHMe; J. Am. Chem. Soc. 114 4036–4042

    Article  CAS  Google Scholar 

  • Fourrier L, Benros C and de Brevern A G 2004 Use of structural alphabet for analysis of short loops connecting repetitive structures; BMC Bioinformatics 5 58

    Article  PubMed  Google Scholar 

  • Frishman D and Argos P 1995 Knowledge-based protein secondary structure assignment; Proteins 23 566–579

    Article  PubMed  CAS  Google Scholar 

  • Guruprased K and Rajkumar S 2000 α and β-turns in proteins revisited: A new set of amino acid turn-type dependent positional preferences and potentials; J. Biosci. 25 143–156

    Google Scholar 

  • Guruprasad K, Rao M J, Adindla S and Guruprasad L 2003 Combinations of turns in proteins; J. Pept. Res. 62 167–174

    Article  PubMed  CAS  Google Scholar 

  • Hooft R W W, Sander C, Vriend G and Abola E E 1996 Errors in protein structures; Nature (London) 381 272

    Article  CAS  Google Scholar 

  • Hutchinson E G and Thornton J M 1994 A revised set of potentials for β-turn formation in proteins; Protein Sci. 3 2207–2216

    PubMed  CAS  Google Scholar 

  • Jacobson M P, Pincus D L, Rappa C S, Day T J F, Honig B, Shaw D E and Friesner R R 2004 A hierarchial approach to all atom protein loop prediction; Proteins Struct. Funct. Bioinformat. 55 351–367

    Article  CAS  Google Scholar 

  • Jones T A and Thirup T 1986 Using known substructures in protein model building and crystallography; EMBO J. 5 819–822

    PubMed  CAS  Google Scholar 

  • Kabsch W and Sander C 1983 Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features; Biopolymers 22 2577–2637

    Article  PubMed  CAS  Google Scholar 

  • Kuntz I D 1972 Protein Folding; J. Am. Chem. Soc. 94 4009–4012

    Article  PubMed  CAS  Google Scholar 

  • Kwasigroch J M, Chomilier J, et al 1996 A global taxonomy of loops in globular proteins; J. Mol. Biol. 259 855–872

    Article  PubMed  CAS  Google Scholar 

  • Laskowski R A, MacArthur M W, Moss D S and Thornton J M 1993 PROCHECK: a program to check the stereochemical quality of protein structures; J. Appl. Crystallogr. 26 283–291

    Article  CAS  Google Scholar 

  • Leszczynski J F and Rose G D 1986 Loops in globular proteins: a novel category of secondary structure; Science 234 849–855

    Article  PubMed  CAS  Google Scholar 

  • Lewis P N, Momany F A and Scheraga H A 1971 Folding of polypeptide chains in proteins: A proposed mechanism for folding; Proc. Natl. Acad. Sci. USA 68 2293–2297

    Article  PubMed  CAS  Google Scholar 

  • Li W and Liu Z 1999 Protein loops on structurally similar scaffolds: database and conformational analysis; Biopolymers 49 481–495

    Article  PubMed  CAS  Google Scholar 

  • Martin A C R, Cheetham J C, et al 1989 Modeling antibody hypervariable loops: a combined algorithm; Proc. Natl. Acad. Sci. USA 203 9268–9272

    Article  Google Scholar 

  • Martin A C R, Toda K, et al 1995 Long loops in proteins; Protein Eng. 11 1093–1101

    Google Scholar 

  • Milburn P J, Konishi Y, Meinwald Y C and Scheraga H A 1987 Chain reversals in model peptides: studies of cysteine-containing cyclic peptides 1. Conformational free energies of cyclization of hexapeptides of sequence Ac-Cys-X-Pro-Gly-Y-Cys-NHMe; J. Am. Chem. Soc. 109 4486–4496

    Article  CAS  Google Scholar 

  • Milner-White E J and Poet R 1986 Four Classes of beta-hairpins in proteins; J. Mol. Biol. 238 733–747

    Google Scholar 

  • Narang P, Bhushan K, Bose S and Jayaram B 2005 A computational pathway for bracketing native-like structures for small alpha helical globular proteins; Phys. Chem. Chem. Phys. 7 2364–2375

    Article  CAS  PubMed  Google Scholar 

  • Narang P, Bhushan K, Bose S and Jayaram B 2006 Protein structure evaluation using an all-atom energy based empirical scoring function; J. Biomol. Str. Dyn. 23 385–406

    CAS  Google Scholar 

  • Oldfield T J 1992 SQUID: A program for the analysis and display of data from crystallography and molecular dynamics; J. Mol. Graphics 10 247–252

    Article  CAS  Google Scholar 

  • Pontious J, Richelle J and Wodak S 1996 Deviations from standard atomic values as a quality measure for protein measure for protein crystal structure; J. Mol. Biol. 264 121–136

    Article  Google Scholar 

  • Ramachandran G N, Ramakrishnan C and Sasisekharan V 1963 Stereochemistry of polypeptide chain configurations; J. Mol. Biol. 7 95–99

    PubMed  CAS  Google Scholar 

  • Ramakrishnan C and Soman K V 1982 Identification of secondary structures in globular proteins — A new algorithm; Int. J. Peptide Protein Res. 20 218–237

    Article  CAS  Google Scholar 

  • Richardson J S 1981 The anatomy and taxonomy of protein structure; Adv. Protein Chem. 34 1–109

    Article  Google Scholar 

  • Ring C S, Kneller D G, Langridge R and Cohen F E 1992 Taxonomy and conformational analysis of loops in proteins; J. Mol. Biol. 224 685–699

    Article  PubMed  CAS  Google Scholar 

  • Rose G, Gierasch L and Smith J 1985 Turns in peptides and proteins; Adv. Protein Chem. 37 1–109

    PubMed  CAS  Google Scholar 

  • Rufino S D, Donate L E, Canard L and Blundell T L 1996 BioComputing: Proceedings of the 1996 Pacific Symposium (eds) Lawrence Hunter and Teri Klein (Singapore: World Scientific)

    Google Scholar 

  • Scully J and Hermans J 1994 Backbone flexibility and stability of reverse turn conformation in a model system; J. Mol. Biol. 235 682–694

    Article  PubMed  CAS  Google Scholar 

  • Sibanda B L and Thornton J M 1985 β-hairpin families in globular proteins; Nature (London) 316 170–174

    Article  CAS  Google Scholar 

  • Sibanda B L, Blundell T L and Thornton J M 1989 Conformation of beta-hairpins in protein structures. A systematic classification with applications to modeling by homology, electron density fitting and protein engineering; J. Mol. Biol. 206 759–777

    Article  PubMed  CAS  Google Scholar 

  • Sibanda B L and Thornton J M 1993 Accommodating sequence changes in β-hairpins in proteins; J. Mol. Biol. 229 428–447

    Article  PubMed  CAS  Google Scholar 

  • Sowdhamini R, Srinivasan N, Ramakrishnan C and Balram P 1992 Orthogonal ββ motifs in proteins; J. Mol. Biol. 223 845–851

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan N, Sowdhamini R, Ramakrishnan C and Balram P 1991 Analysis of short loops connecting secondary structural elements in proteins; in Molecular conformation and biological interactions (eds) C Ramakrishnan and P Balram (Bangalore: Indian Academy of Sciences) 59–73

    Google Scholar 

  • Sutcliffe M J, Haneef I, et al 1987 Knowledge based modeling of homologous proteins, Part I: three dimensional frameworks derived from the simultaneous superposition of multiple structures; Protein Eng. 1 377–384

    Article  PubMed  CAS  Google Scholar 

  • Sudarsanam S, DuBose R F, et al 1995 Modeling protein loops using a ϕ i+1, ψ i dimmer database; Protein Sci. 4 1412–1420

    Article  PubMed  CAS  Google Scholar 

  • Sun Z and Blundell T L 1995 The pattern of common supersecondary structure (motifs) in protein database (Proceedings of the 28th annual Hawaii international conference on system sciences, USA)

  • Venkatachalam C M 1968 Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units; Biopolymers 6 1425–1436

    Article  PubMed  CAS  Google Scholar 

  • Wilmot C M and Thornton J M 1988 Analysis and prediction of the different types of β-turns in proteins; J. Mol. Biol. 203 221–232

    Article  PubMed  CAS  Google Scholar 

  • Wilmot C M and Thornton J M 1990 β-turns and their distortions: A proposed new nomenclature; Protein Eng. 3 479–493

    Article  PubMed  CAS  Google Scholar 

  • Wintjens R T, Rooman M J and Wodak S J 1996 Automatic classification and analysis of alpha-alpha turn motifs in proteins; J Mol. Biol. 255 235–253

    Article  PubMed  CAS  Google Scholar 

  • Wojcik J, Mornon J P, et al 1999 New efficient statistical sequence dependent structure prediction of short to medium sized protein loops based on an exhaustive loop classification; J. Mol. Biol. 289 1469–1490

    Article  PubMed  CAS  Google Scholar 

  • Wright P E, Dyson H J and Lerner R A 1988 Conformation of peptide fragments of proteins in aqueous solution: implications for initiation of protein folding; Biochemistry 27 7167–7175

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Jayaram.

Additional information

Supplementary Data pertaining to this article is available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/jan2007/pp71-81-suppl.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thukral, L., Shenoy, S.R., Bhushan, K. et al. ProRegIn: A regularity index for the selection of native-like tertiary structures of proteins. J Biosci 32, 71–81 (2007). https://doi.org/10.1007/s12038-007-0007-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0007-2

Keywords

Navigation