Skip to main content
Log in

Genome inventory and analysis of nuclear hormone receptors in Tetraodon nigroviridis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Nuclear hormone receptors (NRs) form a large superfamily of ligand-activated transcription factors, which regulate genes underlying a wide range of (patho) physiological phenomena. Availability of the full genome sequence of Tetraodon nigroviridis facilitated a genome wide analysis of the NRs in fish genome. Seventy one NRs were found in Tetraodon and were compared with mammalian and fish NR family members. In general, there is a higher representation of NRs in fish genomes compared to mammalian ones. They showed high diversity across classes as observed by phylogenetic analysis. Nucleotide substitution rates show strong negative selection among fish NRs except for pregnane X receptor (PXR), estrogen receptor (ER) and liver X receptor (LXR). This may be attributed to crucial role played by them in metabolism and detoxification of xenobiotic and endobiotic compounds and might have resulted in slight positive selection. Chromosomal mapping and pairwise comparisons of NR distribution in Tetraodon and humans led to the identification of nine synthenic NR regions, of which three are common among fully sequenced vertebrate genomes. Gene structure analysis shows strong conservation of exon structures among orthologoues. Whereas paralogous members show different splicing patterns with intron gain or loss and addition or substitution of exons played a major role in evolution of NR superfamily.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DBA:

DNA binding domain

LBD:

ligand binding domain

LXR:

liver X receptors

NRs:

nuclear hormone receptors

PXR:

prephone X receptors

References

  • Altschul S F, Madden T L, Schaffer A A, Zhang J, Zhang Z, Miller W and Lipman D J 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25 3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Bateman A, Coin L, Durbin R, Finn R D, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer E L, Studholme D J, Yeats C and Eddy S R 2004 The Pfam protein families database; Nucleic Acids Res. 32 (Database issue) D138–D141

    Article  PubMed  CAS  Google Scholar 

  • Bledsoe R K, Stewart E L and Pearce K H 2004 Structure and function of the glucocorticoid receptor ligand binding domain; Vitam. Horm. 68 49–91

    PubMed  CAS  Google Scholar 

  • Clamp M, Cuff J, Searle S M and Barton G J 2004 The Jalview Java alignment editor; Bioinformatics 20 426–427

    Article  PubMed  CAS  Google Scholar 

  • Eddy S R 1998 Profile hidden Markov models; Bioinformatics 14 755–763

    Article  PubMed  CAS  Google Scholar 

  • Edwards D P 2000 The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors; J. Mammary Gland Biol. Neoplasia 5 307–324

    Article  PubMed  CAS  Google Scholar 

  • Escriva Garcia H, Laudet V and Robinson-Rechavi M 2003 Nuclear receptors are markers of animal genome evolution; J. Struct. Funct. Genom. 3 177–184

    Article  Google Scholar 

  • Escriva H, Delaunay F and Laudet V 2000 Ligand binding and nuclear receptor evolution; Bioessays 22 717–727

    Article  PubMed  CAS  Google Scholar 

  • Escriva H, Bertrand S and Laudet V 2004 The evolution of the nuclear receptor superfamily; Essays Biochem. 40 11–26

    PubMed  CAS  Google Scholar 

  • Felsenstein J 1989 PHYLIP — Phylogeny Inference Package (Version 3.2); Cladistics 5 164–166

    Google Scholar 

  • Giguere V 1999 Orphan nuclear receptors: from gene to function; Endocrinol. Rev. 20 689–725

    Article  CAS  Google Scholar 

  • Gronemeyer H and Laudet V 1995 Transcription factors 3: nuclear receptors; Protein Profile 2 1173–1308

    PubMed  CAS  Google Scholar 

  • Horn F, Vriend G and Cohen F E 2001 Collecting and harvesting biological data: the GPCRDB and NucleaRDB information systems; Nucleic Acids Res. 29 346–349

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J M, Brunet F, Petit J L, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, et al 2004 Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype; Nature (London) 431 946–957

    Article  Google Scholar 

  • Jukes T H 1969 Recent advances in studies of evolutionary relationships between proteins and nucleic acids; Space Life Sci. 1 469–490

    Article  PubMed  CAS  Google Scholar 

  • Kliewer S A, Lehmann J M and Willson T M 1999 Orphan nuclear receptors: shifting endocrinology into reverse; Science 284 757–760

    Article  PubMed  CAS  Google Scholar 

  • Kliewer S A, Moore J T, Wade L, Staudinger J L, Watson M A, Jones S A, McKee D D, Oliver B B, Willson T M, Zetterstrom R H, Perlmann T and Lehmann J M 1998 An orphan nuclear receptor activated by pregnanes defines a novel steroid signaling pathway; Cell 92 73–82

    Article  PubMed  CAS  Google Scholar 

  • Koh Y S and Moore D D 1999 Linkage of the nuclear hormone receptor genes NR1D2, THRB, and RARB: evidence for an ancient, large-scale duplication; Genomics 57 289–292

    Article  PubMed  CAS  Google Scholar 

  • Laudet V 1997 Evolution of the nuclear receptor superfamily: early diversification from an ancestral orphan receptor; J. Mol. Endocrinol. 19 207–226

    Article  PubMed  CAS  Google Scholar 

  • Laudet V and Gronemeyer H 2002 The nuclear receptors factsbook (London: Academic Press)

    Google Scholar 

  • Laudet V, Hanni C, Coll J, Catzeflis F and Stehelin D 1992 Evolution of the nuclear receptor gene superfamily; EMBO J. 11 1003–1013

    PubMed  CAS  Google Scholar 

  • Li W, Jaroszewski L and Godzik A 2001 Clustering of highly homologous sequences to reduce the size of large protein databases; Bioinformatics 17 282–283

    Article  PubMed  CAS  Google Scholar 

  • Luisi B F, Xu W X, Otwinowski Z, Freedman L P, Yamamoto K R and Sigler P B 1991 Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA; Nature (London) 352 497–505

    Article  CAS  Google Scholar 

  • Maglich J M, Caravella J A, Lambert M H, Willson T M, Moore J T and Ramamurthy L 2003 The first completed genome sequence from a telost fish (Fugu rubripes) adds significant diversity to the nuclear receptor superfamily; Nucleic Acids Res. 31 4051–4058

    Article  PubMed  CAS  Google Scholar 

  • Maglich J M, Sluder A, Guan X, Shi Y, McKee D D, Carrick K, Kamdar K, Willson T M and Moore J T 2001 Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes; Genome Biol. 2 RESEARCH-0029

  • Mangelsdorf D J, Thummel C, Beato M, Herrlich P, Schutz G, Umesano K, Blumberg B, Kastner P, Mark M, Chambon P and Evans R 1995 The nuclear receptor superfamily: the second decade; Cell 83 835–839

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Anderson J B, DeWeese-Scott C, Fedorova N D, Geer L Y, He S, Hurwitz D I, Jackson J D et al 2003 CDD: a curated Entrez database of conserved domain alignments; Nucleic Acids Res. 31 383–387

    Article  PubMed  CAS  Google Scholar 

  • Metpally R P R and Sowdhamini R 2005a Genome wide survey of G protein-coupled receptors in Tetraodon nigroviridis; BMC Evol. Biol. 5 41

    Article  PubMed  CAS  Google Scholar 

  • Metpally R P R and Sowdhamini R 2005b Cross genome phylogenetic analysis of human and Drosophila G protein-coupled receptors: application to functional annotation of orphan receptors; BMC Genomics 6 106

    Article  PubMed  CAS  Google Scholar 

  • Nei M and Gojobori T 1986 Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions; Mol. Biol. Evol. 3 418–426

    PubMed  CAS  Google Scholar 

  • Nuclear Receptors Nomenclature Comittee 1999 A unified nomenclature system for the nuclear receptor superfamily; Cell 97 161–163

    Article  Google Scholar 

  • Ota T and Nei M 1994 Variance and covariances of the numbers of synonymous and nonsynonymous substitutions per site; Mol. Biol. Evol. 11 613–619

    PubMed  CAS  Google Scholar 

  • Owen G I and Zelent A 2000 Origins and evolutionary diversification of the nuclear receptor superfamily; Cell. Mol. Life. Sci. 57 809–827

    Article  PubMed  CAS  Google Scholar 

  • Robinson-Rechavi M and Laudet V 2003 Bioinformatics of nuclear receptors; Methods Enzymol. 364 95–118

    PubMed  CAS  Google Scholar 

  • Ruau D, Duarte J, Ourjdal T, Perriere G, Laudet V and Robinson-Rechavi M 2004 Update of NUREBASE: nuclear hormone receptor functional genomics; Nucleic Acids Res. 32 D165–D167

    Article  PubMed  CAS  Google Scholar 

  • Rubin G M, Yandell M D, Wortman J R, Gabor Miklos G L, Nelson C R, Hariharan I K, Fortini M E, Li P W, et al 2000 Comparative genomics of the eukaryotes; Science 287 2204–2215

    Article  PubMed  CAS  Google Scholar 

  • Schmidt H A, Strimmer K, Vingron M and von Haeseler A 2002 TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing; Bioinformatics 18 502–504

    Article  PubMed  CAS  Google Scholar 

  • Schwabe J W, Chapman L, Finch J T and Rhodes D 1993a The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: how receptors discriminate between their response elements; Cell 75 567–578

    Article  PubMed  CAS  Google Scholar 

  • Schwabe J W, Chapman L, Finch J T, Rhodes D and Neuhaus D 1993b DNA recognition by the oestrogen receptor: from solution to the crystal; Structure 1 187–204

    Article  PubMed  CAS  Google Scholar 

  • Shao D and Lazar M A 1999 Modulating nuclear receptor function: may the phos be with you; J. Clin. Invest. 103 1617–1618

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz A C U, Renaud J P and Moras D 2001 Binding of ligands and activation of transcription by nuclear receptors; Annu. Rev. Biophys. Biomol. Struct. 30 329–359

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y and Gojobori T 1999 A method for detecting positive selection at single amino acid sites; Mol. Biol. Evol. 16 1315–1328

    PubMed  CAS  Google Scholar 

  • Tatusov R L, Koonin E V and Lipman D J 1997 A genomic perspective on protein families; Science 278 631–637

    Article  PubMed  CAS  Google Scholar 

  • Thompson J D, Gibson T J, Plewniak F, Jeanmougin F and Higgins D G 1997 The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools; Nucleic Acids Res. 25 4876–4882

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Burch P E, Cooney A J, Lanz R B, Pereira F A, Wu J, Gibbs R A, Weinstock G and Wheeler D A 2004 Genomic analysis of the nuclear receptor family: new insights into structure, regulation, and evolution from the rat genome; Genome Res. 14 580–590

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramanathan Sowdhamini.

Additional information

Supplementary Data pertaining to this article is available on the Journal of Biosciences Website at http://www.ias.ac.in/jbiosci/jan2007/pp43-50-suppl.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Metpally, R.P.R., Vigneshwar, R. & Sowdhamini, R. Genome inventory and analysis of nuclear hormone receptors in Tetraodon nigroviridis . J Biosci 32, 43–50 (2007). https://doi.org/10.1007/s12038-007-0005-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-007-0005-4

Keywords

Navigation