Skip to main content
Log in

A self-similar flow behind a shock wave in a gravitating or non-gravitating gas with heat conduction and radiation heat-flux

  • Published:
Journal of Astrophysics and Astronomy Aims and scope Submit manuscript

Abstract

The propagation of a spherical shock wave in an ideal gas with heat conduction and radiation heat-flux, and with or without self-gravitational effects, is investigated. The initial density of the gas is assumed to obey a power law. The heat conduction is expressed in terms of Fourier’s law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density, and the total energy of the wave to vary with time. Similarity solutions are obtained and the effects of variation of the heat transfer parameters, the variation of initial density and the presence of self-gravitational field are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Raouf, A. M., Gretler, W. 1991, Quasi-similar solutions for blast wave with internal heat transfer effects, Fluid Dyn. Res., 8(5–6), 273–285.

    Article  Google Scholar 

  • Bhowmick, J. B. 1981, An exact analytical solution in radiation gas dynamics, Astrophys. Space Sci., 74(2), 481–485.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Carrus, P., Fox, P., Haas, F., Kopal, Z. 1951, The propagation of shock waves in a stellar model with continuous density distribution, Ap. J., 113(3), 496–518.

    Article  ADS  MathSciNet  Google Scholar 

  • Director, M. N., Dabora, E. K. 1977, An experimental investigation of variable energy blast waves, Acta Astronautica, 4(3), 391–407.

    Article  ADS  Google Scholar 

  • Elliott, L. A. 1960, Similarity methods in radiation hydrodynamics, Proc. R. Soc. Lond. A, 258(3), 287–301.

    ADS  Google Scholar 

  • Freeman, R. A. 1968, Variable-energy blast waves, Brit. J. Appl. Phys. (J. Phys. D), 1(2), 1697–1710.

    ADS  MathSciNet  Google Scholar 

  • Ghoniem, A. F., Kamel, M. M., Berger, S. A., Oppenheim, A. K. 1982, Effects of internal heat transfer on the structure of self-similar blast waves, J. Fluid Mech., 117, 473–491.

    Article  MATH  ADS  Google Scholar 

  • Gretler, W., Wehle, P. 1993, Propagation of blast waves with exponential heat release and internal heat conduction and thermal radiation, Shock Waves, 3(2), 95–104.

    Article  MATH  ADS  Google Scholar 

  • Helliwell, J. B. 1969, Self-similar piston problem with radiative heat transfer, J. Fluid Mech., 37(3), 497–512.

    Article  MATH  ADS  Google Scholar 

  • Kim, K. B., Berger, S. A., Kamel, M. M., Korobeinikov, V. P., Oppenheim, A. K. 1975, Boundarylayer theory of blast waves, J. Fluid Mech., 71(1), 65–88.

    Article  MATH  ADS  Google Scholar 

  • Laumbach, D. D., Probstein, R. F. 1970, A point explosion in a cold exponential atmosphere-Part 2, Radiating flow, J. Fluid Mech., 40(4), 833–858.

    Article  ADS  Google Scholar 

  • Marshak, R. E. 1958, Effect of radiation on shock wave behaviour, Phys. Fluids, 1(1), 24–29.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Nath, O., Ojha, S., Takhar, H. S. 1991, A study of stellar point explosion in a self-gravitating radiative magneto-hydrodynamic medium, Astrophys. Space Sci., 183(1), 135–145.

    Article  MATH  ADS  Google Scholar 

  • Nicastro, J. R. 1970, Similarity analysis of radiative gas dynamics with spherical symmetry, Phys. Fluids., 13(8), 2000–2006.

    Article  ADS  Google Scholar 

  • Pomraning, G. C. 1973, The Equations of Radiation Hydrodynamics, Int. Ser. Monographs in Natural Philosophy, Pergaman Press: Oxford.

    Google Scholar 

  • Purohit, S. C. 1974, Self-similar homothermal flow of self-gravitating gas behind shock wave, J. Phys. Soc. (Japan), 36(1), 288–292.

    Article  ADS  MathSciNet  Google Scholar 

  • Rogers, M. H. 1957 Analytic solutions for the blast-waves problem with an atmosphere of varying density, Astrophys. J., 125(2), 478–493.

    Article  ADS  MathSciNet  Google Scholar 

  • Rogers, M. H. 1958, Similarity flows behind strong shock waves, Quart. J. Mech. Appl. Math., 11(4), 411–422.

    Article  MATH  MathSciNet  Google Scholar 

  • Rosenau, P., Frankenthal, S. 1976a, Equatorial propagation of axisymmetric magnetohydrodynamic shocks, Phys. Fluids, 19(12), 1889–1899.

    Article  MATH  ADS  Google Scholar 

  • Rosenau, P., Frankenthal, S. 1976b, Shock disturbances in a thermally conducting solar wind, Astrophys. J., 208(2), 633–637.

    Article  ADS  Google Scholar 

  • Rosenau, P., Frankenthal, S. 1978, Propagation of magnetohydrodynamic shocks in a thermally conducting medium, Phys. Fluids, 21(4), 559–566.

    Article  ADS  Google Scholar 

  • Sakurai, A. 1956, Propagation of spherical shock waves in stars, J. Fluid Mech., 1(4), 436–453.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Sedov, L. I. 1959, Similarity and Dimensional Methods in Mechanics, Academic Press: New York.

    MATH  Google Scholar 

  • Singh, J. B., Srivastava, S. K. 1982, Propagation of spherical shock waves in an exponential medium with radiation heat flux, Astrophys. Space Sci., 88(2), 277–282.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Singh, J. B., Vishwakarma, P. R. 1983, Self-similar solutions in the theory of flare-ups in novae I, Astrophys. Space Sci., 95(1), 99–104.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Vishwakarma, J. P., Yadav, A. K. 2003, Self-similar analytical solutions for blast waves in inhomogeneous atmospheres with frozen-in-magnetic field, Eur. Phys. J. B, 34(2), 247–253.

    Article  ADS  Google Scholar 

  • Wang, K. C. 1964, The “piston problem” with thermal radiation, J. Fluid Mech., 20(3), 447–455.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Zel’dovich, Ya. B., Raizer, Yu. P. 1967, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena, Vol. II (Translated from 2nd Russian edn.), Academic Press: New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Vishwakarma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vishwakarma, J.P., Singh, A.K. A self-similar flow behind a shock wave in a gravitating or non-gravitating gas with heat conduction and radiation heat-flux. J Astrophys Astron 30, 53–69 (2009). https://doi.org/10.1007/s12036-009-0002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12036-009-0002-0

Key words

Navigation