Skip to main content
Log in

Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Preterm white matter injury (WMI) is a demyelinating disease with high incidence and mortality in premature infants. Oligodendrocyte cells (OLs) are a specialized glial cell that produces myelin proteins and adheres to the axons providing energy and metabolic support which susceptible to endoplasmic reticulum protein quality control. Disruption of cellular protein homeostasis led to OLs dysfunction and cell death, immediately, the unfolded protein response (UPR) activated to attempt to restore the protein homeostasis via IRE1/XBP1s, PERK/eIF2α and ATF6 pathway that reduced protein translation, strengthen protein-folding capacity, and degraded unfolding/misfolded protein. Moreover, recent works have revealed the conspicuousness function of ER signaling pathways in regulating influenced factors such as calcium homeostasis, mitochondrial reactive oxygen generation, and autophagy activation to regulate protein hemostasis and improve the myelination function of OLs. Each of the regulation modes and their corresponding molecular mechanisms provides unique opportunities and distinct perspectives to obtain a deep understanding of different actions of ER stress in maintaining OLs’ health and function. Therefore, our review focuses on summarizing the current understanding of ER stress on OLs’ protein homeostasis micro-environment in myelination during white matter development, as well as the pathophysiology of WMI, and discussing the further potential experimental therapeutics targeting these factors that restore the function of the UPR in OLs myelination function.

Graphical Abstract

Potential Role of ER Stress in Modulating Protein Homeostasis in OLs. OLs, produce myelin proteins and provide energy and metabolic support which are susceptible to cellular protein homeostasis and ER protein quality control. 1) UPR plays a different role in activating IRE1/XBP1s, PERK/eIF2α, and ATF6 pathways not only in attempting to restore protein homeostasis to promote cell survival but also aggravating disruption of cellular protein homeostasis to accelerate cell death. 2) PERK pathway facilitated the protein secretion, amino acid metabolism, and stress response to promote cell survival via phosphorylating eIF2α level and strengthening ATF4 expression; Nevertheless, the prolonged activating of the PERK pathway could up-regulate CHOP, GADD34, and other pro-apoptotic factors to further aggravates cell injury. 3) IRE1 and ATF6 pathways enhanced various gene transcription associated with protein folding, secreting, EARD, and ERQC to prompt cell protein homeostasis micro-environment; However, sustained IRE1 and/or ATF6 activity could prompt cell survival toward apoptosis via the pro-apoptotic pathway, inflammation, and other patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. He Y et al (2022) White Matter Injury in Preterm Infants: Pathogenesis and Potential Therapy From the Aspect of the Gut-Brain Axis. Front Neurosci 16:849372. https://doi.org/10.3389/fnins.2022.849372

    Article  PubMed  PubMed Central  Google Scholar 

  2. Irzan H et al (2021) White matter analysis of the extremely preterm born adult brain. Neuroimage 237:118112. https://doi.org/10.1016/j.neuroimage.2021.118112

    Article  PubMed  Google Scholar 

  3. Cainelli E, Arrigoni F, Vedovelli L (2020) White matter injury and neurodevelopmental disabilities: A cross-disease (dis)connection. Prog Neurobiol 193:101845. https://doi.org/10.1016/j.pneurobio.2020.101845

    Article  PubMed  Google Scholar 

  4. Vaes JEG et al (2019) The Potential of Stem Cell Therapy to Repair White Matter Injury in Preterm Infants: Lessons Learned From Experimental Models. Front Physiol 10:540. https://doi.org/10.3389/fphys.2019.00540

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Tilborg E et al (2018) Origin and dynamics of oligodendrocytes in the developing brain: Implications for perinatal white matter injury. Glia 66(2):221–238. https://doi.org/10.1002/glia.23256

    Article  PubMed  Google Scholar 

  6. Ophelders D et al (2020) Preterm Brain Injury, Antenatal Triggers, and Therapeutics: Timing Is Key. Cells. 9(8):1871. https://doi.org/10.3390/cells9081871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhou B et al (2021) Oligodendrocyte lineage cells and depression. Mol Psychiatry 26(1):103–117. https://doi.org/10.1038/s41380-020-00930-0

    Article  PubMed  Google Scholar 

  8. Nir A, Barak B (2021) White matter alterations in Williams syndrome related to behavioral and motor impairments. Glia 69(1):5–19. https://doi.org/10.1002/glia.23868

    Article  PubMed  Google Scholar 

  9. Kang M, Yao Y (2022) Laminin regulates oligodendrocyte development and myelination. Glia 70(3):414–429. https://doi.org/10.1002/glia.24117

    Article  CAS  PubMed  Google Scholar 

  10. Kuhn S et al (2019) Oligodendrocytes in Development Myelin Generation and Beyond. . Cells 8(11):1424. https://doi.org/10.3390/cells8111424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Shahsavani N, Kataria H, Karimi-Abdolrezaee S (2021) Mechanisms and repair strategies for white matter degeneration in CNS injury and diseases. Biochim Biophys Acta Mol Basis Dis 1867(6):166117. https://doi.org/10.1016/j.bbadis.2021.166117

    Article  CAS  PubMed  Google Scholar 

  12. Lin W, Stone S (2020) Unfolded protein response in myelin disorders. Neural Regen Res 15(4):636–645. https://doi.org/10.4103/1673-5374.266903

    Article  CAS  PubMed  Google Scholar 

  13. Dulamea AO (2017) The contribution of oligodendrocytes and oligodendrocyte progenitor cells to central nervous system repair in multiple sclerosis: perspectives for remyelination therapeutic strategies. Neural Regen Res 12(12):1939–1944. https://doi.org/10.4103/1673-5374.221146

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li J et al (2016) Preterm white matter brain injury is prevented by early administration of umbilical cord blood cells. Exp Neurol 283(Pt A):179–187. https://doi.org/10.1016/j.expneurol.2016.06.017

    Article  PubMed  Google Scholar 

  15. Boccazzi M et al (2021) The immune-inflammatory response of oligodendrocytes in a murine model of preterm white matter injury: the role of TLR3 activation. Cell Death Dis 12(2):166. https://doi.org/10.1038/s41419-021-03446-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang C et al (2021) A novel RIP1/RIP3 dual inhibitor promoted OPC survival and myelination in a rat neonatal white matter injury model with hOPC graft. Stem Cell Res Ther 12(1):462. https://doi.org/10.1186/s13287-021-02532-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rangon CM et al (2018) Myelination induction by a histamine H3 receptor antagonist in a mouse model of preterm white matter injury. Brain Behav Immun 74:265–276. https://doi.org/10.1016/j.bbi.2018.09.017

    Article  CAS  PubMed  Google Scholar 

  18. Yeh C et al (2017) Neonatal Dexamethasone Treatment Exacerbates Hypoxia/Ischemia-Induced White Matter Injury. Mol Neurobiol 54(9):7083–7095. https://doi.org/10.1007/s12035-016-0241-4

    Article  CAS  PubMed  Google Scholar 

  19. Hung PL et al (2013) Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor. Stroke 44(8):2275–2283. https://doi.org/10.1161/STROKEAHA.113.001552

    Article  CAS  PubMed  Google Scholar 

  20. Hung PL et al (2018) Thyroxin Protects White Matter from Hypoxic-Ischemic Insult in the Immature Sprague(-)Dawley Rat Brain by Regulating Periventricular White Matter and Cortex BDNF and CREB Pathways. Int J Mol Sci. 19(9):2573. https://doi.org/10.3390/ijms19092573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang S et al (2021) HIFalpha Regulates Developmental Myelination Independent of Autocrine Wnt Signaling. J Neurosci 41(2):251–268. https://doi.org/10.1523/JNEUROSCI.0731-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hoeber D et al (2016) Erythropoietin Restores Long-Term Neurocognitive Function Involving Mechanisms of Neuronal Plasticity in a Model of Hyperoxia-Induced Preterm Brain Injury. Oxid Med Cell Longev 2016:9247493. https://doi.org/10.1155/2016/9247493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Srivastava T et al (2018) A TLR/AKT/FoxO3 immune tolerance-like pathway disrupts the repair capacity of oligodendrocyte progenitors. J Clin Invest 128(5):2025–2041. https://doi.org/10.1172/JCI94158

    Article  PubMed  PubMed Central  Google Scholar 

  24. Scheuer T et al (2015) Oligodendroglial maldevelopment in the cerebellum after postnatal hyperoxia and its prevention by minocycline. Glia 63(10):1825–1839. https://doi.org/10.1002/glia.22847

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wu Z et al (2020) Dexmedetomidine alleviates neurobehavioral impairments and myelination deficits following lipopolysaccharide exposure in early postnatal rats. Life Sci 263:118556. https://doi.org/10.1016/j.lfs.2020.118556

    Article  CAS  PubMed  Google Scholar 

  26. van den Heuij LG et al (2019) Delayed intranasal infusion of human amnion epithelial cells improves white matter maturation after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 39(2):223–239. https://doi.org/10.1177/0271678X17729954

    Article  PubMed  Google Scholar 

  27. Chen X, Cubillos-Ruiz JR (2021) Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 21(2):71–88. https://doi.org/10.1038/s41568-020-00312-2

    Article  CAS  PubMed  Google Scholar 

  28. Krshnan, L., M.L. van de Weijer, and P. Carvalho (2022). Endoplasmic Reticulum-Associated Protein Degradation. Cold Spring Harb Perspect Biol. 14(12). doi: https://doi.org/10.1101/cshperspect.a041247.

  29. Wiseman RL, Mesgarzadeh JS, Hendershot LM (2022) Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell 82(8):1477–1491. https://doi.org/10.1016/j.molcel.2022.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hetz C, Zhang K, Kaufman RJ (2020) Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol 21(8):421–438. https://doi.org/10.1038/s41580-020-0250-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang R et al (2022) IRE1 signaling regulates chondrocyte apoptosis and death fate in the osteoarthritis. J Cell Physiol 237(1):118–127. https://doi.org/10.1002/jcp.30537

    Article  CAS  PubMed  Google Scholar 

  32. Bashir S et al (2021) The molecular mechanism and functional diversity of UPR signaling sensor IRE1. Life Sci 265:118740. https://doi.org/10.1016/j.lfs.2020.118740

    Article  CAS  PubMed  Google Scholar 

  33. Shi M et al (2021) Endoplasmic Reticulum Stress-Associated Neuronal Death and Innate Immune Response in Neurological Diseases. Front Immunol 12:794580. https://doi.org/10.3389/fimmu.2021.794580

    Article  CAS  PubMed  Google Scholar 

  34. Sprenkle NT et al (2017) Endoplasmic reticulum stress and inflammation in the central nervous system. Mol Neurodegener 12(1):42. https://doi.org/10.1186/s13024-017-0183-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu C, Ju R (2023) Manganese-induced neuronal apoptosis: new insights into the role of endoplasmic reticulum stress in regulating autophagy-related proteins. Toxicol Sci 191(2):193–200. https://doi.org/10.1093/toxsci/kfac130

    Article  CAS  PubMed  Google Scholar 

  36. Cakir I, Nillni EA (2019) Endoplasmic Reticulum Stress, the Hypothalamus, and Energy Balance. Trends Endocrinol Metab 30(3):163–176. https://doi.org/10.1016/j.tem.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  37. Smedley GD, Walker KE, Yuan SH (2021) The Role of PERK in Understanding Development of Neurodegenerative Diseases. Int J Mol Sci. 22(15):8146. https://doi.org/10.3390/ijms22158146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shacham T, Patel C, Lederkremer GZ (2021) PERK Pathway and Neurodegenerative Disease: To Inhibit or to Activate? Biomolecules. 11(3):354. https://doi.org/10.3390/biom11030354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu H et al (2018) The C/EBP Homologous Protein (CHOP) Transcription Factor Functions in Endoplasmic Reticulum Stress-Induced Apoptosis and Microbial Infection. Front Immunol 9:3083. https://doi.org/10.3389/fimmu.2018.03083

    Article  CAS  PubMed  Google Scholar 

  40. Sims SG et al (2022) The role of endoplasmic reticulum stress in astrocytes. Glia 70(1):5–19. https://doi.org/10.1002/glia.24082

    Article  CAS  PubMed  Google Scholar 

  41. Perner C, Kruger E (2022) Endoplasmic Reticulum Stress and Its Role in Homeostasis and Immunity of Central and Peripheral Neurons. Front Immunol 13:859703. https://doi.org/10.3389/fimmu.2022.859703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yuan Z et al (2022) AA147 ameliorates post-cardiac arrest cerebral ischemia/reperfusion injury through the co-regulation of the ATF6 and Nrf2 signaling pathways. Front Pharmacol 13:1028002. https://doi.org/10.3389/fphar.2022.1028002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu F et al (2018) Estrogen and propofol combination therapy inhibits endoplasmic reticulum stress and remarkably attenuates cerebral ischemia-reperfusion injury and OGD injury in hippocampus. Biomed Pharmacother 108:1596–1606. https://doi.org/10.1016/j.biopha.2018.09.167

    Article  CAS  PubMed  Google Scholar 

  44. Li H et al (2019) Icariin Inhibits Endoplasmic Reticulum Stress-induced Neuronal Apoptosis after Spinal Cord Injury through Modulating the PI3K/AKT Signaling Pathway. Int J Biol Sci 15(2):277–286. https://doi.org/10.7150/ijbs.30348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Golubinskaya V et al (2019) Bestrophin-3 Expression in a Subpopulation of Astrocytes in the Neonatal Brain After Hypoxic-Ischemic Injury. Front Physiol 10:23. https://doi.org/10.3389/fphys.2019.00023

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cabral-Miranda F et al (2022) Unfolded protein response IRE1/XBP1 signaling is required for healthy mammalian brain aging. EMBO J 41(22):e111952. https://doi.org/10.15252/embj.2022111952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sharma V et al (2018) Local Inhibition of PERK Enhances Memory and Reverses Age-Related Deterioration of Cognitive and Neuronal Properties. J Neurosci 38(3):648–658. https://doi.org/10.1523/JNEUROSCI.0628-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Naranjo JR et al (2016) Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease. J Clin Invest 126(2):627–638. https://doi.org/10.1172/JCI82670

    Article  PubMed  PubMed Central  Google Scholar 

  49. Qu J et al (2023) Piezo1 suppression reduces demyelination after intracerebral hemorrhage. Neural Regen Res 18(8):1750–1756. https://doi.org/10.4103/1673-5374.361531

    Article  PubMed  Google Scholar 

  50. Saraswat Ohri S et al (2023) Acute Pharmacological Inhibition of Protein Kinase R-Like Endoplasmic Reticulum Kinase Signaling After Spinal Cord Injury Spares Oligodendrocytes and Improves Locomotor Recovery. J Neurotrauma 40(9–10):1007–1019. https://doi.org/10.1089/neu.2022.0177

    Article  PubMed  Google Scholar 

  51. Li L et al (2022) Selective activation of cannabinoid receptor-2 reduces white matter injury via PERK signaling in a rat model of traumatic brain injury. Exp Neurol 347:113899. https://doi.org/10.1016/j.expneurol.2021.113899

    Article  CAS  PubMed  Google Scholar 

  52. Sen T et al (2020) Aberrant ER Stress Induced Neuronal-IFNbeta Elicits White Matter Injury Due to Microglial Activation and T-Cell Infiltration after TBI. J Neurosci 40(2):424–446. https://doi.org/10.1523/JNEUROSCI.0718-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Saraswat Ohri S et al (2021) Oligodendrocyte-specific deletion of Xbp1 exacerbates the endoplasmic reticulum stress response and restricts locomotor recovery after thoracic spinal cord injury. Glia 69(2):424–435. https://doi.org/10.1002/glia.23907

    Article  CAS  PubMed  Google Scholar 

  54. Thangaraj A et al (2020) Targeting endoplasmic reticulum stress and autophagy as therapeutic approaches for neurological diseases. Int Rev Cell Mol Biol 350:285–325. https://doi.org/10.1016/bs.ircmb.2019.11.001

    Article  CAS  PubMed  Google Scholar 

  55. Wu S et al (2020) The Integrated UPR and ERAD in Oligodendrocytes Maintain Myelin Thickness in Adults by Regulating Myelin Protein Translation. J Neurosci 40(43):8214–8232. https://doi.org/10.1523/JNEUROSCI.0604-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wu S, Lin W (2023) Endoplasmic reticulum associated degradation is essential for maintaining the viability or function of mature myelinating cells in adults. Glia 71(5):1360–1376. https://doi.org/10.1002/glia.24346

    Article  CAS  PubMed  Google Scholar 

  57. Montibeller L et al (2020) Tissue-selective regulation of protein homeostasis and unfolded protein response signalling in sporadic ALS. J Cell Mol Med 24(11):6055–6069. https://doi.org/10.1111/jcmm.15170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hussien Y et al (2015) ER Chaperone BiP/GRP78 Is Required for Myelinating Cell Survival and Provides Protection during Experimental Autoimmune Encephalomyelitis. J Neurosci 35(48):15921–15933. https://doi.org/10.1523/JNEUROSCI.0693-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhao Q et al (2022) Neurogenesis potential of oligodendrocyte precursor cells from oligospheres and injured spinal cord. Front Cell Neurosci 16:1049562. https://doi.org/10.3389/fncel.2022.1049562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lei Z et al (2020) NF-kappaB Activation Accounts for the Cytoprotective Effects of PERK Activation on Oligodendrocytes during EAE. J Neurosci 40(33):6444–6456. https://doi.org/10.1523/JNEUROSCI.1156-20.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Stone S et al (2018) Activating transcription factor 6alpha deficiency exacerbates oligodendrocyte death and myelin damage in immune-mediated demyelinating diseases. Glia 66(7):1331–1345. https://doi.org/10.1002/glia.23307

    Article  PubMed  PubMed Central  Google Scholar 

  62. Takasugi M et al (2023) CD44 correlates with longevity and enhances basal ATF6 activity and ER stress resistance. Cell Rep 42(9):113130. https://doi.org/10.1016/j.celrep.2023.113130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen X et al (2022) Dysfunctional Endoplasmic Reticulum-Mitochondrion Coupling Is Associated with Endoplasmic Reticulum Stress-Induced Apoptosis and Neurological Deficits in a Rodent Model of Severe Head Injury. J Neurotrauma 39(7–8):560–576. https://doi.org/10.1089/neu.2021.0347

    Article  CAS  PubMed  Google Scholar 

  64. Liu S et al (2015) Disrupted autophagy after spinal cord injury is associated with ER stress and neuronal cell death. Cell Death Dis 6(1):e1582. https://doi.org/10.1038/cddis.2014.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Huang SQ et al (2014) Demyelination initiated by oligodendrocyte apoptosis through enhancing endoplasmic reticulum-mitochondria interactions and Id2 expression after compressed spinal cord injury in rats. CNS Neurosci Ther 20(1):20–31. https://doi.org/10.1111/cns.12155

    Article  CAS  PubMed  Google Scholar 

  66. Rathnasamy G et al (2016) Hypoxia-Induced Iron Accumulation in Oligodendrocytes Mediates Apoptosis by Eliciting Endoplasmic Reticulum Stress. Mol Neurobiol 53(7):4713–4727. https://doi.org/10.1007/s12035-015-9389-6

    Article  CAS  PubMed  Google Scholar 

  67. Stone, S., et al. (2020). The UPR preserves mature oligodendrocyte viability and function in adults by regulating autophagy of PLP. JCI Insight. 5(5). doi: https://doi.org/10.1172/jci.insight.132364.

  68. Numasawa-Kuroiwa Y et al (2014) Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Reports 2(5):648–661. https://doi.org/10.1016/j.stemcr.2014.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lin Y et al (2014) PERK activation preserves the viability and function of remyelinating oligodendrocytes in immune-mediated demyelinating diseases. Am J Pathol 184(2):507–519. https://doi.org/10.1016/j.ajpath.2013.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang M et al (2016) Regulation of PERK-eIF2alpha signalling by tuberous sclerosis complex-1 controls homoeostasis and survival of myelinating oligodendrocytes. Nat Commun 7:12185. https://doi.org/10.1038/ncomms12185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Chen N et al (2015) Different Eukaryotic Initiation Factor 2Bepsilon Mutations Lead to Various Degrees of Intolerance to the Stress of Endoplasmic Reticulum in Oligodendrocytes. Chin Med J (Engl) 128(13):1772–1777. https://doi.org/10.4103/0366-6999.159353

    Article  CAS  PubMed  Google Scholar 

  72. Saraswat Ohri S et al (2018) Activating Transcription Factor-6alpha Deletion Modulates the Endoplasmic Reticulum Stress Response after Spinal Cord Injury but Does Not Affect Locomotor Recovery. J Neurotrauma 35(3):486–491. https://doi.org/10.1089/neu.2015.3993

    Article  PubMed  PubMed Central  Google Scholar 

  73. McLaughlin T et al (2022) Cellular stress signaling and the unfolded protein response in retinal degeneration: mechanisms and therapeutic implications. Mol Neurodegener 17(1):25. https://doi.org/10.1186/s13024-022-00528-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Mollazadeh H et al (2018) The effect of statin therapy on endoplasmic reticulum stress. Pharmacol Res 137:150–158. https://doi.org/10.1016/j.phrs.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  75. Liu T et al (2021) EETs/sEHi alleviates nociception by blocking the crosslink between endoplasmic reticulum stress and neuroinflammation in a central poststroke pain model. J Neuroinflammation 18(1):211. https://doi.org/10.1186/s12974-021-02255-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yan F et al (2017) Pharmacological Inhibition of PERK Attenuates Early Brain Injury After Subarachnoid Hemorrhage in Rats Through the Activation of Akt. Mol Neurobiol 54(3):1808–1817. https://doi.org/10.1007/s12035-016-9790-9

    Article  CAS  PubMed  Google Scholar 

  77. Hughes D, Mallucci GR (2019) The unfolded protein response in neurodegenerative disorders - therapeutic modulation of the PERK pathway. FEBS J 286(2):342–355. https://doi.org/10.1111/febs.14422

    Article  CAS  PubMed  Google Scholar 

  78. Raymundo DP et al (2020) Pharmacological Targeting of IRE1 in Cancer. Trends Cancer 6(12):1018–1030. https://doi.org/10.1016/j.trecan.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  79. Glembotski CC, Rosarda JD, Wiseman RL (2019) Proteostasis and Beyond: ATF6 in Ischemic Disease. Trends Mol Med 25(6):538–550. https://doi.org/10.1016/j.molmed.2019.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bilekova S, Sachs S, Lickert H (2021) Pharmacological Targeting of Endoplasmic Reticulum Stress in Pancreatic Beta Cells. Trends Pharmacol Sci 42(2):85–95. https://doi.org/10.1016/j.tips.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  81. Bhardwaj M et al (2020) Regulation of autophagy by canonical and non-canonical ER stress responses. Semin Cancer Biol 66:116–128. https://doi.org/10.1016/j.semcancer.2019.11.007

    Article  PubMed  Google Scholar 

  82. Pan B et al (2021) Longxuetongluo Capsule protects against cerebral ischemia/reperfusion injury through endoplasmic reticulum stress and MAPK-mediated mechanisms. J Adv Res 33:215–225. https://doi.org/10.1016/j.jare.2021.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wang YH et al (2022) Lumbrokinase regulates endoplasmic reticulum stress to improve neurological deficits in ischemic stroke. Neuropharmacology 221:109277. https://doi.org/10.1016/j.neuropharm.2022.109277

    Article  CAS  PubMed  Google Scholar 

  84. Wang Q et al (2019) Loureirin B Promotes Axon Regeneration by Inhibiting Endoplasmic Reticulum Stress: Induced Mitochondrial Dysfunction and Regulating the Akt/GSK-3beta Pathway after Spinal Cord Injury. J Neurotrauma 36(12):1949–1964. https://doi.org/10.1089/neu.2018.5966

    Article  CAS  PubMed  Google Scholar 

  85. Morales C et al (2023) Ursodeoxycholic Acid Binds PERK and Ameliorates Neurite Atrophy in a Cellular Model of GM2 Gangliosidosis. Int J Mol Sci. 24(8):7209. https://doi.org/10.3390/ijms24087209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Emam AM et al (2021) Vortioxetine mitigates neuronal damage by restricting PERK/eIF2alpha/ATF4/CHOP signaling pathway in rats subjected to focal cerebral ischemia-reperfusion. Life Sci 283:119865. https://doi.org/10.1016/j.lfs.2021.119865

    Article  CAS  PubMed  Google Scholar 

  87. Guo MM et al (2021) Biochanin A Alleviates Cerebral Ischemia/Reperfusion Injury by Suppressing Endoplasmic Reticulum Stress-Induced Apoptosis and p38MAPK Signaling Pathway In Vivo and In Vitro. Front Endocrinol (Lausanne) 12:646720. https://doi.org/10.3389/fendo.2021.646720

    Article  PubMed  PubMed Central  Google Scholar 

  88. Coker-Gurkan A et al (2019) Atiprimod induce apoptosis in pituitary adenoma: Endoplasmic reticulum stress and autophagy pathways. J Cell Biochem 120(12):19749–19763. https://doi.org/10.1002/jcb.29281

    Article  CAS  PubMed  Google Scholar 

  89. Wu Y et al (2022) Geraniol-Mediated Suppression of Endoplasmic Reticulum Stress Protects against Cerebral Ischemia-Reperfusion Injury via the PERK-ATF4-CHOP Pathway. Int J Mol Sci. 24(1):544. https://doi.org/10.3390/ijms24010544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Niu XL et al (2019) DL-3-n-butylphthalide alleviates vascular cognitive impairment by regulating endoplasmic reticulum stress and the Shh/Ptch1 signaling-pathway in rats. J Cell Physiol 234(8):12604–12614. https://doi.org/10.1002/jcp.27332

    Article  CAS  PubMed  Google Scholar 

  91. Huang GH et al (2019) 4-Phenylbutyrate Ameliorates Anxiety Disorder by Inhibiting Endoplasmic Reticulum Stress after Diffuse Axonal Injury. J Neurotrauma 36(11):1856–1868. https://doi.org/10.1089/neu.2018.6048

    Article  PubMed  Google Scholar 

  92. Wang M et al (2021) Sappanone A Protects Against Inflammation, Oxidative Stress and Apoptosis in Cerebral Ischemia-Reperfusion Injury by Alleviating Endoplasmic Reticulum Stress. Inflammation 44(3):934–945. https://doi.org/10.1007/s10753-020-01388-6

    Article  CAS  PubMed  Google Scholar 

  93. Elitt MS et al (2018) Chemical Screening Identifies Enhancers of Mutant Oligodendrocyte Survival and Unmasks a Distinct Pathological Phase in Pelizaeus-Merzbacher Disease. Stem Cell Reports 11(3):711–726. https://doi.org/10.1016/j.stemcr.2018.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yuan FY et al (2023) Gardenia jasminoides Extract GJ-4 Alleviates Memory Deficiency of Vascular Dementia in Rats through PERK-Mediated Endoplasmic Reticulum Stress Pathway. Am J Chin Med 51(1):53–72. https://doi.org/10.1142/S0192415X23500040

    Article  CAS  PubMed  Google Scholar 

  95. Le Reste PJ et al (2020) Local intracerebral inhibition of IRE1 by MKC8866 sensitizes glioblastoma to irradiation/chemotherapy in vivo. Cancer Lett 494:73–83. https://doi.org/10.1016/j.canlet.2020.08.028

    Article  CAS  PubMed  Google Scholar 

  96. Fang M et al (2020) Dl-3-n-butylphthalide attenuates hypoxic-ischemic brain injury through inhibiting endoplasmic reticulum stress-induced cell apoptosis and alleviating blood-brain barrier disruption in newborn rats. Brain Res 1747:147046. https://doi.org/10.1016/j.brainres.2020.147046

    Article  CAS  PubMed  Google Scholar 

  97. Ohri SS et al (2011) Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury. Glia 59(10):1489–1502. https://doi.org/10.1002/glia.21191

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the grant from the National Natural Science Foundation of China (82201910); and China Postdoctoral Science Foundation (2022M710616).

Author information

Authors and Affiliations

Authors

Contributions

C.L. and R.J. prepared and designed. R.J. and C.L. supervised the final manuscript and C.L. wrote the manuscript.

Corresponding author

Correspondence to Rong Ju.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ju, R. Potential Role of Endoplasmic Reticulum Stress in Modulating Protein Homeostasis in Oligodendrocytes to Improve White Matter Injury in Preterm Infants. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03905-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03905-8

Keywords

Navigation