Skip to main content
Log in

Htr2b Promotes M1 Microglia Polarization and Neuroinflammation after Spinal Cord Injury via Inhibition of Neuregulin-1/ErbB Signaling

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The secondary injury of spinal cord injury (SCI) is dominated by neuroinflammation, which was caused by microglia M1 polarization. This study aimed to investigate the role and mechanism of Htr2b on neuroinflammation of SCI. The BV2 and HMC3 microglia were treated with lipopolysaccharide (LPS) or interferon (IFN)-γ to simulate in vitro models of SCI. Sprague–Dawley rats were subjected to the T10 laminectomy to induce animal model of SCI. Htr2b mRNA expression was measured by qRT-PCR. The expression of Htr2b and Iba-1 was detected by western blot and immunofluorescence. The expression of inflammatory cytokines in vitro and in vivo was also measured. Kyoto Encyclopedia of Genes and Genomes (KEGG) was employed to analyze Htr2b-regulated signaling pathways. Rat behavior was analyzed by the Basso, Beattie, and Bresnahan (BBB) and inclined plane test. Rat dorsal horn tissues were stained by hematoxylin–eosin (H&E) and Nissl to measure neuron loss. Htr2b was highly expressed in LPS- and IFN-γ-treated microglia and SCI rats. SCI modeling promoted M1 microglia polarization and increased levels of inflammatory cytokines. Inhibition of Htr2b by Htr2b shRNA or RS-127445 reduced the expression of Htr2b, Iba-1, and iNOS and suppressed cytokine levels. KEGG showed that Htr2b inhibited ErbB signaling pathway. Inhibition of Htr2b increased protein expression of neuregulin-1 (Nrg-1) and p-ErbB4. Inhibition of the ErbB signaling pathway markedly reversed the effect of Htr2b shRNA on M1 microglia polarization and inflammatory cytokines. Htr2b promotes M1 microglia polarization and neuroinflammation after SCI by inhibiting Nrg-1/ErbB signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Mothe AJ, Tator CH (2012) Advances in stem cell therapy for spinal cord injury. J Clin Investig 122(11):3824–3834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Nakamura M, Okano H (2013) Cell transplantation therapies for spinal cord injury focusing on induced pluripotent stem cells. Cell Res 23(1):70–80

    Article  CAS  PubMed  Google Scholar 

  3. Dietz V, Fouad K (2014) Restoration of sensorimotor functions after spinal cord injury. Brain 137(Pt 3):654–667

    Article  PubMed  Google Scholar 

  4. Silva NA, Sousa N, Reis RL, Salgado AJ (2014) From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol 114:25–57

    Article  PubMed  Google Scholar 

  5. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W (2017) Cell transplantation therapy for spinal cord injury. Nat Neurosci 20(5):637–647

    Article  CAS  PubMed  Google Scholar 

  6. Torres-Espín A, Haefeli J, Ehsanian R, Torres D, Almeida CA, Huie JR, Chou A, Morozov D et al (2021) Topological network analysis of patient similarity for precision management of acute blood pressure in spinal cord injury. Elife 16(10):68015

    Article  Google Scholar 

  7. Bourguignon L, Tong B, Geisler F, Schubert M, Röhrich F, Saur M, Weidner N, Rupp R et al (2022) International surveillance study in acute spinal cord injury confirms viability of multinational clinical trials. BMC Med 20(1):022–02395

    Article  Google Scholar 

  8. Courtine G, Sofroniew MV (2019) Spinal cord repair: advances in biology and technology. Nat Med 25(6):898–908

    Article  CAS  PubMed  Google Scholar 

  9. Hutson TH, Di Giovanni S (2019) The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration. Nat Rev Neurol 15(12):732–745

    Article  PubMed  Google Scholar 

  10. Zhou Y, Dong Q, Pan Z, Song Y, Su P, Niu Y, Sun Y, Liu D (2019) Hyperbaric Oxygen Improves Functional Recovery of the Injured Spinal Cord by Inhibiting Inflammation and Glial Scar Formation. Am J Phys Med Rehabil 98(10):914–920

    Article  PubMed  Google Scholar 

  11. Wang B, Shen PF, Qu YX, Zheng C, Xu JD, Xie ZK, Cao XJ (2019) miR-940 promotes spinal cord injury recovery by inhibiting TLR4/NF-κB pathway-mediated inflammation. Eur Rev Med Pharmacol Sci 23(8):3190–3197

    CAS  PubMed  Google Scholar 

  12. Deng J, Meng F, Zhang K, Gao J, Liu Z, Li M, Liu X, Li J et al (2022) Emerging roles of microglia depletion in the treatment of spinal cord injury. Cells 11 (12):1871

  13. Hilton BJ, Moulson AJ, Tetzlaff W (2017) Neuroprotection and secondary damage following spinal cord injury: concepts and methods. Neurosci Lett 652:3–10

    Article  CAS  PubMed  Google Scholar 

  14. Zeng H, Liu N, Yang YY, Xing HY, Liu XX, Li F, La GY, Huang MJ et al (2019) Lentivirus-mediated downregulation of α-synuclein reduces neuroinflammation and promotes functional recovery in rats with spinal cord injury. J Neuroinflammation 16(1):019–1658

    Article  Google Scholar 

  15. Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM (2000) M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 164(12):6166–6173

    Article  CAS  PubMed  Google Scholar 

  16. Lv ZC, Cao XY, Guo YX, Zhang XD, Ding J, Geng J, Feng K, Niu H (2019) Effects of MiR-146a on repair and inflammation in rats with spinal cord injury through the TLR/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci 23(11):4558–4563

    PubMed  Google Scholar 

  17. Launay JM, Schneider B, Loric S, Da Prada M, Kellermann O (2006) Serotonin transport and serotonin transporter-mediated antidepressant recognition are controlled by 5-HT2B receptor signaling in serotonergic neuronal cells. Faseb J 20(11):1843–1854

    Article  CAS  PubMed  Google Scholar 

  18. Mao L, Xin F, Ren J, Xu S, Huang H, Zha X, Wen X, Gu G et al (2022) 5-HT2B-mediated serotonin activation in enterocytes suppresses colitis-associated cancer initiation and promotes cancer progression. Theranostics 12(8):3928–3945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Radke AK, Piantadosi PT, Uhl GR, Hall FS, Holmes A (2020) Improved visual discrimination learning in mice with partial 5-HT2B gene deletion. Neurosci Lett 738:135378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bevilacqua L, Doly S, Kaprio J, Yuan Q, Tikkanen R, Paunio T, Zhou Z, Wedenoja J et al (2010) A population-specific HTR2B stop codon predisposes to severe impulsivity. Nature 468(7327):1061–1066

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Lacoste J, Lamy S, Ramoz N (2020) A positive association between a polymorphism in the HTR2B gene and cocaine-crack in a French Afro-Caribbean population. 21(10):784–789

  22. Montalvo-Ortiz JL, Zhou H (2018) Translational studies support a role for serotonin 2B receptor (HTR2B) gene in aggression-related cannabis response. 23(12):2277–2286

  23. Choi WG, Choi W, Oh TJ, Cha HN, Hwang I, Lee YK, Lee SY, Shin H et al (2021) Inhibiting serotonin signaling through HTR2B in visceral adipose tissue improves obesity-related insulin resistance. The J Clin Investig 131(23):e145331

    Article  CAS  PubMed  Google Scholar 

  24. Yang T, Wang H, Li Y, Zeng Z, Shen Y, Wan C, Wu Y, Dong J et al (2020) Serotonin receptors 5-HTR2A and 5-HTR2B are involved in cigarette smoke-induced airway inflammation, mucus hypersecretion and airway remodeling in mice. Int Immunopharmacol 81:106036

    Article  CAS  PubMed  Google Scholar 

  25. Kataria H, Alizadeh A, Karimi-Abdolrezaee S (2019) Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog Neurobiol 180:101643

    Article  CAS  PubMed  Google Scholar 

  26. Gauthier MK, Kosciuczyk K, Tapley L, Karimi-Abdolrezaee S (2013) Dysregulation of the neuregulin-1-ErbB network modulates endogenous oligodendrocyte differentiation and preservation after spinal cord injury. Eur J Neurosci 38(5):2693–2715

    Article  PubMed  Google Scholar 

  27. Zhao YJ, Qiao H, Liu DF, Li J, Li JX, Chang SE, Lu T, Li FT et al (2022) Lithium promotes recovery after spinal cord injury. Neural Regen Res 17(6):1324–1333

    Article  CAS  PubMed  Google Scholar 

  28. Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12(1):1–21

    Article  CAS  PubMed  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  30. Sun J, Zhou YQ, Xu BY, Li JY, Zhang LQ, Li DY, Zhang S, Wu JY et al (2021) STING/NF-κB/IL-6-Mediated Inflammation in Microglia Contributes to Spared Nerve Injury (SNI)-Induced Pain Initiation. J Neuroimmune Pharmacol 2(10):021–10031

    Google Scholar 

  31. Chen G, Zhang YQ, Qadri YJ, Serhan CN, Ji RR (2018) Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron 100(6):1292–1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang L, Yin C, Liu T, Abdul M, Zhou Y, Cao JL, Lu C (2020) Pellino1 regulates neuropathic pain as well as microglial activation through the regulation of MAPK/NF-κB signaling in the spinal cord. J Neuroinflammation 17(1):020–01754

    Article  Google Scholar 

  33. Gensel JC, Donnelly DJ, Popovich PG (2011) Spinal cord injury therapies in humans: an overview of current clinical trials and their potential effects on intrinsic CNS macrophages. Expert Opin Ther Targets 15(4):505–518

    Article  PubMed  Google Scholar 

  34. Swaroop S, Mahadevan A, Shankar SK, Adlakha YK, Basu A (2018) HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation 15(1):018–1214

    Google Scholar 

  35. Pineau I, Lacroix S (2007) Proinflammatory cytokine synthesis in the injured mouse spinal cord: multiphasic expression pattern and identification of the cell types involved. J Comp Neurol 500(2):267–285

    Article  CAS  PubMed  Google Scholar 

  36. Longbrake EE, Lai W, Ankeny DP, Popovich PG (2007) Characterization and modeling of monocyte-derived macrophages after spinal cord injury. J Neurochem 102(4):1083–1094

    Article  CAS  PubMed  Google Scholar 

  37. Brennan FH, Li Y, Wang C (2022) Microglia coordinate cellular interactions during spinal cord repair in mice. 13(1):4096

  38. Xu S, Wang J, Zhong J, Shao M, Jiang J, Song J, Zhu W, Zhang F et al (2021) CD73 alleviates GSDMD-mediated microglia pyroptosis in spinal cord injury through PI3K/AKT/Foxo1 signaling. Clin Transl Med 11(1):269

    Article  Google Scholar 

  39. Zhang L, Zhuang X, Kotitalo P, Keller T, Krzyczmonik A, Haaparanta-Solin M, Solin O, Forsback S et al (2021) Intravenous transplantation of olfactory ensheathing cells reduces neuroinflammation after spinal cord injury via interleukin-1 receptor antagonist. Theranostics 11(3):1147–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu Z, Yao X, Sun B, Jiang W, Liao C, Dai X, Chen Y, Chen J et al (2021) Pretreatment with kaempferol attenuates microglia-mediate neuroinflammation by inhibiting MAPKs-NF-κB signaling pathway and pyroptosis after secondary spinal cord injury. Free Radic Biol Med 168:142–154

    Article  CAS  PubMed  Google Scholar 

  41. Yang EJ, Song IS, Song KS (2019) Ethanol extract of Glycyrrhizae Radix modulates the responses of antigen-specific splenocytes in experimental autoimmune encephalomyelitis. Phytomed Int J Phytother Phytopharmacol 54:56–65

    CAS  Google Scholar 

  42. Olayioye MA, Neve RM, Lane HA, Hynes NE (2000) The ErbB signaling network: receptor heterodimerization in development and cancer. Embo J 19(13):3159–3167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Imoto H, Zhang S, Okada M (2020) A computational framework for prediction and analysis of cancer signaling dynamics from RNA sequencing data-application to the ErbB receptor signaling pathway. Cancers 12(10):2878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ryzhov S, Matafonov A, Galindo CL, Zhang Q, Tran TL, Lenihan DJ, Lenneman CG, Feoktistov I et al (2017) ERBB signaling attenuates proinflammatory activation of nonclassical monocytes. Am J Physiol Heart Circ Physiol 312(5):H907–H918

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vermeulen Z, Hervent AS, Dugaucquier L, Vandekerckhove L, Rombouts M, Beyens M, Schrijvers DM, De Meyer GRY et al (2017) Inhibitory actions of the NRG-1/ErbB4 pathway in macrophages during tissue fibrosis in the heart, skin, and lung. Am J Physiol Heart Circ Physiol 313(5):H934–H945

    Article  PubMed  Google Scholar 

  46. Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagómez D, Barry DP, Allaman MM, Washington MK et al (2016) EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest 126(9):3296–3312

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schumacher MA, Hedl M, Abraham C, Bernard JK, Lozano PR, Hsieh JJ, Almohazey D, Bucar EB et al (2017) ErbB4 signaling stimulates pro-inflammatory macrophage apoptosis and limits colonic inflammation. Cell Death Dis 8(2):42

    Article  Google Scholar 

  48. Pitcher GM, Kalia LV, Ng D, Goodfellow NM, Yee KT, Lambe EK, Salter MW (2011) Schizophrenia susceptibility pathway neuregulin 1-ErbB4 suppresses Src upregulation of NMDA receptors. Nat Med 17(4):470–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu JM, Li KX, Cao SX, Chen XJ, Shen CJ, Zhang Y, Geng HY, Chen BQ et al (2017) Increased NRG1-ErbB4 signaling in human symptomatic epilepsy. Sci Rep 7(1):017–00207

    ADS  Google Scholar 

  50. Ma Y, Fan P, Zhao R, Zhang Y, Wang X, Cui W (2022) Neuregulin-1 regulates the conversion of M1/M2 microglia phenotype via ErbB4-dependent inhibition of the NF-κB pathway. 49 (5):3975–3986

  51. Xu J, Hu C, Chen S, Shen H, Jiang Q, Huang P, Zhao W (2017) Neuregulin-1 protects mouse cerebellum against oxidative stress and neuroinflammation. Brain Res 1670:32–43

    Article  CAS  PubMed  Google Scholar 

  52. Orr MB, Gensel JC (2018) Spinal Cord Injury Scarring and Inflammation: Therapies Targeting Glial and Inflammatory Responses. Neurother The J Am Soc Exp NeuroTher 15(3):541–553

    CAS  Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: WH C and XL G; Perform research: WL Y and X X; Data analysis and interpretation: X P and H L; Manuscript writing: All authors; Final approval of manuscript: All authors.

Corresponding author

Correspondence to Hao Li.

Ethics declarations

Ethics approval and consent to participate

The experimental protocol of our study was performed in accordance with the Guide for the Care and Use of Laboratory Animals and approved by the Qilu Hospital, Cheeloo College of Medicine, Shandong University.

Consent for publication

Not Applicable.

Competing Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Wenhao Chen and Xianlei Gao are Co-first author.

Highlights

1. Htr2b is highly expressed in LPS- and IFN-γ-treated microglia and SCI rats;.

2. Inhibition of Htr2b represses M1 microglia polarization and inflammation;.

3. Htr2b inhibits the Nrg-1/ErbB signaling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Gao, X., Yang, W. et al. Htr2b Promotes M1 Microglia Polarization and Neuroinflammation after Spinal Cord Injury via Inhibition of Neuregulin-1/ErbB Signaling. Mol Neurobiol 61, 1643–1654 (2024). https://doi.org/10.1007/s12035-023-03656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03656-6

Keywords

Navigation